
From Throw-Away Traffic to Bots:
Detecting the Rise of DGA-Based Malware

Manos Antonakakis‡,∗, Roberto Perdisci†,∗, Yacin Nadji∗,
Nikolaos Vasiloglou‡, Saeed Abu-Nimeh‡, Wenke Lee∗ and David Dagon∗

‡Damballa Inc., †University of Georgia
{manos,nvasil,sabunimeh}@damballa.com , perdisci@cs.uga.edu

∗Georgia Institute of Technology
{yacin.nadji, wenke}@cc.gatech.edu, dagon@sudo.sh

Abstract
Many botnet detection systems employ a blacklist of

known command and control (C&C) domains to detect
bots and block their traffic. Similar to signature-based
virus detection, such a botnet detection approach is static
because the blacklist is updated only after running an ex-
ternal (and often manual) process of domain discovery.
As a response, botmasters have begun employing domain
generation algorithms (DGAs) to dynamically produce a
large number of random domain names and select a small
subset for actual C&C use. That is, a C&C domain is ran-
domly generated and used for a very short period of time,
thus rendering detection approaches that rely on static
domain lists ineffective. Naturally, if we know how a do-
main generation algorithm works, we can generate the
domains ahead of time and still identify and block bot-
net C&C traffic. The existing solutions are largely based
on reverse engineering of the bot malware executables,
which is not always feasible.
In this paper we present a new technique to detect ran-

domly generated domains without reversing. Our insight
is that most of the DGA-generated (random) domains
that a bot queries would result in Non-Existent Domain
(NXDomain) responses, and that bots from the same bot-
net (with the same DGA algorithm) would generate sim-
ilar NXDomain traffic. Our approach uses a combination
of clustering and classification algorithms. The cluster-
ing algorithm clusters domains based on the similarity in
the make-ups of domain names as well as the groups of
machines that queried these domains. The classification
algorithm is used to assign the generated clusters to mod-
els of known DGAs. If a cluster cannot be assigned to a
known model, then a new model is produced, indicating
a new DGA variant or family. We implemented a pro-
totype system and evaluated it on real-world DNS traffic
obtained from large ISPs in North America. We report
the discovery of twelve DGAs. Half of them are variants
of known (botnet) DGAs, and the other half are brand
new DGAs that have never been reported before.

1 Introduction
Botnets are groups of malware-compromised ma-

chines, or bots, that can be remotely controlled by an
attacker (the botmaster) through a command and control
(C&C) communication channel. Botnets have become
the main platform for cyber-criminals to send spam, steal
private information, host phishing web-pages, etc. Over
time, attackers have developed C&C channels with dif-
ferent network structures. Most botnets today rely on
a centralized C&C server, whereby bots query a prede-
fined C&C domain name that resolves to the IP address
of the C&C server from which commands will be re-
ceived. Such centralized C&C structures suffer from the
single point of failure problem because if the C&C do-
main is identified and taken down, the botmaster loses
control over the entire botnet.
To overcome this limitation, attackers have used P2P-

based C&C structures in botnets such as Nugache [35],
Storm [38], and more recently Waledac [39], Zeus [2],
and Alureon (a.k.a. TDL4) [12]. While P2P botnets
provide a more robust C&C structure that is difficult to
detect and take down, they are typically harder to imple-
ment and maintain. In an effort to combine the simplicity
of centralized C&Cs with the robustness of P2P-based
structures, attackers have recently developed a number
of botnets that locate their C&C server through automat-
ically generated pseudo-random domains names. In or-
der to contact the botmaster, each bot periodically exe-
cutes a domain generation algorithm (DGA) that, given
a random seed (e.g., the current date), produces a list of
candidate C&C domains. The bot then attempts to re-
solve these domain names by sending DNS queries un-
til one of the domains resolves to the IP address of a
C&C server. This strategy provides a remarkable level
of agility because even if one or more C&C domain
names or IP addresses are identified and taken down, the
bots will eventually get the IP address of the relocated
C&C server via DNS queries to the next set of automat-
ically generated domains. Notable examples of DGA-

based botnets (or DGA-bots, for short) are Bobax [33],
Kraken [29], Sinowal (a.k.a. Torpig) [34], Srizbi [30],
Conficker-A/B [26], Conficker-C [23] and Murofet [31].
A defender can attempt to reverse engineer the bot mal-
ware, particularly its DGA algorithm, to pre-compute
current and future candidate C&C domains in order to
detect, block, and even take down the botnet. However,
reverse engineering is not always feasible because the bot
malware can be updated very quickly (e.g., hourly) and
obfuscated (e.g., encrypted, and only decrypted and exe-
cuted by external triggers such as time).
In this paper, we propose a novel detection system,

called Pleiades, to identify DGA-based bots within a
monitored network without reverse engineering the bot
malware. Pleiades is placed “below” the local recursive
DNS (RDNS) server or at the edge of a network to mon-
itor DNS query/response messages from/to the machines
within the network. Specifically, Pleiades analyzes DNS
queries for domain names that result in Name Error re-
sponses [19], also called NXDOMAIN responses, i.e., do-
main names for which no IP addresses (or other resource
records) exist. In the remainder of this paper, we refer
to these domain names as NXDomains. The focus on
NXDomains is motivated by the fact that modern DGA-
bots tend to query large sets of domain names among
which relatively few successfully resolve to the IP ad-
dress of the C&C server. Therefore, to automatically
identify DGA domain names, Pleiades searches for rela-
tively large clusters of NXDomains that (i) have similar
syntactic features, and (ii) are queried by multiple po-
tentially compromised machines during a given epoch.
The intuition is that in a large network, like the ISP net-
work where we ran our experiments, multiple hosts may
be compromised with the same DGA-bots. Therefore,
each of these compromised assets will generate several
DNS queries resulting in NXDomains, and a subset of
these NXDomains will likely be queried by more than
one compromised machine. Pleiades is able to automat-
ically identify and filter out “accidental”, user-generated
NXDomains due to typos or mis-configurations. When
Pleiades finds a cluster of NXDomains, it applies statis-
tical learning techniques to build a model of the DGA.
This is used later to detect future compromised ma-
chines running the same DGA and to detect active do-
main names that “look similar” to NXDomains resulting
from the DGA and therefore probably point to the botnet
C&C server’s address.
Pleiades has the advantage of being able to discover

and model new DGAs without labor-intensive malware
reverse-engineering. This allows our system to detect
new DGA-bots before any sample of the related malware
family is captured and analyzed. Unlike previous work
on DNS traffic analysis for detecting malware-related [4]
or malicious domains in general [3, 6], Pleiades lever-

ages throw-away traffic (i.e., unsuccessful DNS resolu-
tions) to (1) discover the rise of new DGA-based botnets,
(2) accurately detect bot-compromised machines, and (3)
identify and block the active C&C domains queried by
the discovered DGA-bots. Pleiades achieves these goals
by monitoring the DNS traffic in local networks, without
the need for a large-scale deployment of DNS analysis
tools required by prior work.
Furthermore, while botnet detection systems that fo-

cus on network flow analysis [13, 36, 44, 46] or require
deep packet inspection [10, 14] may be capable of de-
tecting compromised machines within a local network,
they do not scale well to the overwhelming volume of
traffic typical of large ISP environments. On the other
hand, Pleiades employs a lightweight DNS-based moni-
toring approach, and can detect DGA-based malware by
focusing on a small fraction of all DNS traffic in an ISP
network. This allows Pleiades to scale well to very large
ISP networks, where we evaluated our prototype system.
This paper makes the following contributions:

• We propose Pleiades, the first DGA-based bot-
net identification system that efficiently analyzes
streams of unsuccessful domain name resolutions,
or NXDomains, in large ISP networks to automati-
cally identify DGA-bots.

• We built a prototype implementation of Pleiades,
and evaluated its DGA identification accuracy over
a large labeled dataset consisting of a mix of NX-
Domains generated by four different known DGA-
based botnets and NXDomains “accidentally” gen-
erated by typos or mis-configurations. Our experi-
ments demonstrate that Pleiades can accurately de-
tect DGA-bots.

• We deployed and evaluated our Pleiades prototype
in a large production ISP network for a period of 15
months. Our experiments discovered twelve new
DGA-based botnets and enumerated the compro-
mised machines. Half of these new DGAs have
never been reported before.

The remainder of the paper is organized as follows.
In Section 2 we discuss related work. We provide an
overview of Pleiades in Section 3. The DGA discovery
process is described in Section 4. Section 5 describes the
DGA classification and C&C detection processes. We
elaborate on the properties of the datasets used and the
way we obtained the ground truth in Section 6. The ex-
perimental results are presented in Section 7 while we
discuss the limitations of our systems in Section 8. We
conclude the paper in Section 9.

2 Related Work
Dynamic domain generation has been used by mal-

ware to evade detection and complicate mitigation, e.g.,
Bobax, Kraken, Torpig, Srizbi, and Conficker [26]. To
uncover the underlying domain generation algorithm
(DGA), researchers often need to reverse engineer the
bot binary. Such a task can be time consuming and re-
quires advanced reverse engineering skills [18].
The infamous Conficker worm is one of the most ag-

gressive pieces of malware with respect to domain name
generation. The “C” variant of the worm generated
50,000 domains per day. However, Conficker-C only
queried 500 of these domains every 24 hours. In older
variants of the worm, A and B, the worm cycled through
the list of domains every three and two hours, respec-
tively. In Conficker-C, the length of the generated do-
mains was between four and ten characters, and the do-
mains were distributed across 110 TLDs [27].
Stone-Gross et al. [34] were the first to report on do-

main fluxing. In the past, malware used IP fast-fluxing,
where a single domain name pointed to several IP ad-
dresses to avoid being taken down easily. However, in
domain fluxing malware uses a domain generation al-
gorithm to generate several domain names, and then at-
tempt to communicate with a subset of them. The au-
thors also analyzed Torpig’s DGA and found that the
bot utilizes Twitter’s API. Specifically, it used the sec-
ond character of the most popular Twitter search and
generated a new domain every day. It was updated to
use the second character of the 5th most popular Twitter
search. Srizbi [40] is another example of a bot that uti-
lizes a DGA by using unique magic number. Researchers
identified several unique magic numbers from multiple
copies of the bot. The magic number is XOR’ed with the
current date and a different set of domains is generated.
Only the characters “q w e r t y u i o p a s d f” are used
in the generated domain names.
Yadav et. al. proposed a technique to identify botnets

by finding randomly generated domain names [42], and
improvements that also include NXDomains and tempo-
ral correlation [43]. They evaluated their approaches by
automatically detecting Conficker botnets in an offline
dataset from a Tier-1 ISP in South Asia in the first paper,
and both the ISP dataset and a university’s DNS logs in
the second.
Villamarin-Salomon and Brustoloni [37] compared

two approaches to identify botnet C&Cs. In their first
approach, they identified domains with high query rates
or domains that were temporally correlated. They used
Chebyshev’s inequality and Mahalanobis distance to
identify anomalous domains. In their second approach,
they analyzed recurring “dynamic” DNS replies with
NXDomain responses. Their experiments showed that
the first approach was ineffective, as several legitimate

services use DNS with short time-to-live (TTL) values.
However, their second approach yielded better detection
and identified suspicious C&C domains.
Pleiades differs from the approaches described above

in the following ways. (A) Our work models five differ-
ent types of bot families including Conficker, Murofet,
Sinowal, and Bobax. (B)Wemodel these bot families us-
ing two clustering techniques. The first utilizes the distri-
bution of the characters and 2-grams in the domain name.
The second relies on historical data that shows the rela-
tionship between hosts and domain names. (C)We build
a classification model to predict the maliciousness of do-
mains that deviate from the two clustering techniques.
Unlike previous work, our approach does not require

active probing to maintain a fresh list of legitimate do-
mains. Our approach does not rely on external reputa-
tion databases (e.g., DNSBLs); instead, it only requires
access to local DNS query streams to identify new clus-
ters of DGA NXDomains. Not only does our approach
identify new DGAs, but it also builds models for these
DGAs to classify hosts that will generate similar NXDo-
mains in the future. Furthermore, among the list of iden-
tified domains in the DGAs, our approach pinpoints the
C&C domains. Lastly, we note that our work is comple-
mentary to the larger collection of previous research that
attempts to detect and identify malicious domain names,
e.g., [3, 4].

3 System Overview
In this section, we provide a high-level overview of

our DGA-bot detection system Pleiades. As shown in
Figure 1, Pleiades consists of two main modules: a DGA
Discovery module, and a DGA Classification and C&C
Detection module. We discuss the roles of these two
main modules and their components, and how they are
used in coordination to actively learn and update DGA-
bot detection models. We describe these components in
more detail in Sections 4 and 5.

3.1 DGA Discovery
The DGA Discovery module analyzes streams of un-

successful DNS resolutions, as seen from “below” a local
DNS server (see Figure 1). All NXDomains generated by
network users are collected during a given epoch (e.g.,
one day). Then, the collected NXDomains are clustered
according to the following two similarity criteria: (1) the
domain name strings have similar statistical characteris-
tics (e.g., similar length, similar level of “randomness”,
similar character frequency distribution, etc.) and (2) the
domains have been queried by overlapping sets of hosts.
The main objective of this NXDomain clustering process
is to group together domain names that likely are auto-
matically generated by the same algorithm running on
multiple machines within the monitored network.

Figure 1: A high level overview of Pleiades.

Naturally, because this clustering step is unsupervised,
some of the output NXDomain clusters may contain
groups of domains that happen to be similar by chance
(e.g., NXDomains due to common typos or to mis-
configured applications). Therefore, we apply a subse-
quent filtering step. We use a supervised DGA Classifier
to prune NXDomain clusters that appear to be generated
by DGAs that we have previously discovered and mod-
eled, or that contain domain names that are similar to
popular legitimate domains. The final output of the DGA
Discovery module is a set of NXDomain clusters, each
of which likely represents the NXDomains generated by
previously unknown or not yet modeled DGA-bots.

3.2 DGA Classification and C&C Detection
Every time a new DGA is discovered, we use a su-

pervised learning approach to build models of what the
domains generated by this new DGA “look like”. In par-
ticular, we build two different statistical models: (1) a
statistical multi-class classifier that focuses on assign-
ing a specific DGA label (e.g., DGA-Conficker.C)
to the set of NXDomains generated by a host hi and (2)
a Hidden Markov Model (HMM) that focuses on finding
single active domain names queried by hi that are likely
generated by a DGA (e.g., DGA-Conficker.C) run-
ning on the host, and are therefore good candidate C&C
domains.
The DGA Modeling component receives differ-

ent sets of domains labeled as Legitimate (i.e.,
“non-DGA”), DGA-Bobax, DGA-Torpig/Sinowal,
DGA-Conficker.C, New-DGA-v1, New-DGA-v2,
etc., and performs the training of the multi-class DGA
Classifier and the HMM-based C&C Detection module.
The DGA Classification module works as follows.

Similar to the DGA Discovery module, we monitor the
stream of NXDomains generated by each client machine

“below” the local recursive DNS server.
Given a subset of NXDomains generated by a ma-

chine, we extract a number of statistical features related
to the NXDomain strings. Then, we ask the DGA Clas-
sifier to identify whether this subset of NXDomains re-
sembles the NXDomains generated by previously dis-
covered DGAs. That is, the classifier will either label the
subset of NXDomains as generated by a known DGA,
or tell us that it does not fit any model. If the subset
of NXDomains is assigned a specific DGA label (e.g.,
DGA-Conficker.C), the host that generated the NX-
Domains is deemed to be compromised by the related
DGA-bot.
Once we obtain the list of machines that appear to be

compromised with DGA-based bots, we take detection
one step further. While all previous steps focused on NX-
Domains, we now turn our attention to domain names for
which we observe valid resolutions. Our goal is to iden-
tify which domain names, among the ones generated by
the discovered DGA-based bots, actually resolve into a
valid IP address. In other words, we aim to identify the
botnet’s active C&C server.
To achieve this goal, we consider all domain names

that are successfully resolved by hosts which have been
classified as running a given DGA, say New-DGA-vX,
by the DGA Classifier. Then, we test these successfully
resolved domains against an HMM specifically trained
to recognize domains generated by New-DGA-vX. The
HMM analyzes the sequence of characters that compose
a domain name d, and computes the likelihood that d is
generated by New-DGA-vX.
We use an HMM, rather than the DGA Classifier, be-

cause for the C&C detection phase we need to classify
single domain names. The DGA Classifier is not suitable
for this task because it expects as input sets of NXDo-
mains generated by a given host to assign a label to the

DGA-bot running on that host. Some of the features used
by the DGA Classifier cannot be reliably extracted from
a single domain name (see Sections 4.1.1 and 5.2).

4 DGA Discovery
The DGA Discovery module analyzes sequences of

NXDomains generated by hosts in a monitored network,
and in a completely unsupervised way, clusters NXDo-
mains that are being automatically generated by a DGA.
We achieve this goal in multiple steps (see Figure 1).
First (Step 1), we collect sequences of NXDomains gen-
erated by each host during an epoch E. Afterwards (Step
2), we split the overall set of NXDomains generated by
all monitored hosts into small subsets, and translate each
set into a statistical feature vector (see Section 4.1.1).
We then apply the X-means clustering algorithm [24] to
group these domain subsets into larger clusters of domain
names that have similar string-based characteristics.
Separately (Step 3), we cluster the NXDomains based

on a completely different approach that takes into ac-
count whether two NXDomains are being queried by
overlapping sets of hosts. First, we build a bipartite host
association graph in which the two sets of vertices repre-
sent distinct hosts and distinct NXDomains, respectively.
A host vertex Vhi is connected to an NXDomain vertex
Vnj if host hi queried NXDomain n j. This allows us to
identify different NXDomains that have been queried by
overlapping sets of hosts. Intuitively, if two NXDomains
are queried by multiple common hosts, this indicates that
the querying hosts may be running the same DGA. We
can then leverage this definition of similarity between
NXDomains to cluster them (see Section 4.1.3).
These two distinct views of similarities among NXDo-

mains are then reconciled in a cluster correlation phase
(Step 4). This step improves the quality of the final NX-
Domains clusters by combining the clustering results ob-
tained in Step 2 and Step 3, and reduces possible noise
introduced by clusters of domains that may appear sim-
ilar purely by chance, for example due to similar typos
originating from different network users.
The final clusters represent different groups of NX-

Domains, each containing domain names that are highly
likely to be generated by the same DGA. For each of
the obtained NXDomain clusters, the question remains
if they belong to a known DGA, or a newly discovered
one. To answer this question (Step 5), we use the DGA
Classifier described in Section 5.2, which is specifically
trained to distinguish between sets of NXDomains gen-
erated by currently known DGAs. Clusters that match
previously modeled DGAs are discarded. On the other
hand, if a cluster of NXDomains does not resemble any
previously seen DGAs, we identify the cluster of NXDo-
mains as having been generated by a new, previously un-
known DGA. These NXDomains will then be sent (Step

6) to the DGA Modeling module, which will update (i.e.,
re-train) the DGA Classifier component.

4.1 NXDomain Clustering
We now describe the NXDomain Clusteringmodule in

detail. First, we introduce the statistical features Pleiades
uses to translate small sets of NXDomains into feature
vectors, and then discuss how these feature vectors are
clustered to find similar NXDomains.

4.1.1 Statistical Features
To ease the presentation of how the statistical features

are computed, we first introduce some notation that we
will be using throughout this section.
Definitions and Notation A domain name d con-
sists of a set of labels separated by dots, e.g.,
www.example.com. The rightmost label is called
the top-level domain (TLD or TLD(d)), e.g., com.
The second-level domain (2LD or 2LD(d)) repre-
sents the two rightmost labels separated by a period,
e.g., example.com. The third-level domain (3LD
or 3LD(d)) contains the three rightmost labels, e.g.,
www.example.com, and so on.
We will often refer to splitting a sequence NX =

{d1,d2, ...,dm} of NXDomains into a number of
subsequences (or subsets) of length α , NXk =
{dr,dr+1, ...,dr+α−1}, where r = α(k− 1) + 1 and k =
1,2, ...,#mα $. Subscript k indicates the k-th subsequence
of length α in the sequence of m NXDomains NX . Each
of the NXk domain sequences can be translated into a
feature vector, as described below.
n-gram Features Given a subsequence NXk of α NX-
Domains, we measure the frequency distribution of n-
grams across the domain name strings, with n = 1, ..,4.
For example, for n = 2, we compute the frequency of
each 2-gram. At this point, we can compute the median,
average and standard deviation of the obtained distribu-
tion of 2-gram frequency values, thus obtaining three fea-
tures. We do this for each value of n= 1, ...,4, producing
12 statistical features in total. By measuring the median,
average and standard deviation, we are trying to capture
the shape of the frequency distribution of the n-grams.
Entropy-based Features This group of features com-
putes the entropy of the character distribution for sep-
arate domain levels. For example, we separately com-
pute the character entropy for the 2LDs and 3LDs ex-
tracted from the domains in NXk. To better understand
how these features are measured, consider a set NXk of
α domains. We first extract the 2LD of each domain
di ∈ NXk, and for each domain we compute the entropy
H(2LD(di)) of the characters of its 2LD. Then, we com-
pute the average and standard deviation of the set of val-
ues {H(2LD(di))}i=1...α . We repeat this for 3LDs and
for the overall domain name strings. We measure a total

of six features, which capture the “level of randomness”
in the domains. The intuition is that most DGAs pro-
duce random-looking domain name strings, and we want
to account for this characteristic of the DGAs.
Structural Domain Features This group of features
is used to summarize information about the structure of
the NXDomains in NXk, such as their length, the num-
ber of unique TLDs, and the number of domain levels.
In total, we compute 14 features. Specifically, given
NXk, we compute the average, median, standard devi-
ation, and variance of the length of the domain names
(four features), and of the number of domain levels (four
features). Also, we compute the number of distinct char-
acters that appear in these NXDomains (one feature), the
number of distinct TLDs, and the ratio between the num-
ber of domains under the .com TLD and the number of
domains that use other TLDs (two features). The remain-
ing features measure the average, median, and standard
deviation of the occurrence frequency distribution for the
different TLDs (three features).

4.1.2 Clustering using Statistical Features
To find clusters of similar NXDomains, we proceed as

follows. Given the set NX of all NXDomains that we ob-
served from all hosts in the monitored network, we split
NX into subsets of size α , as mentioned in Section 4.1.1.
Assuming m is the number of distinct NXDomains in
NX , we split the set NX into #mα $ different subsets where
α = 10.
For each of the obtained subsets NXk of NX , we com-

pute the aforementioned 33 statistical features. After we
have translated each NXk into its corresponding feature
vector, we apply the X-means clustering algorithm [24].
X-means will group the NXk into X clusters, where X is
automatically computed by an optimization process in-
ternal to X-means itself. At this point, given a cluster
C= {NXk}k=1..l of l NXDomain subsets, we simply take
the union of the NXk in C as an NXDomain cluster.

4.1.3 Clustering using Bipartite Graphs
Hosts that are compromised with the same DGA-

based malware naturally tend to generate (with high
probability) partially overlapping sets of NXDomains.
On the other hand, other “non-DGA” NXDomains are
unlikely to be queried by multiple hosts. For example,
it is unlikely that multiple distinct users make identical
typos in a given epoch. This motivates us to consider
NXDomains that are queried by several common hosts as
similar, and in turn use this similarity measure to cluster
NXDomains that are likely generated by the same DGA.
To this end, we build a sparse association matrix M,

where columns represent NXDomains and rows repre-
sent hosts that query more than two of the column NX-
Domains over the course of an epoch. We discard hosts

INPUT : Sparse matrix M ∈ℜl×k, in which the rows represent
l hosts and the columns represent k NXDomains.

[1] : Normalize M: ∀ j = 1, ..,k
l
∑
i=1

Mi, j = 1

[2] : Compute the similarity matrix S fromM: S=MT ·M
[3] : Compute the first ρ eigenvectors from S by
eigen-decomposition.

LetU ∈ℜρ×k be the matrix containing k vectors u1, ...,uk of size
ρ resulting from the eigen-decomposition of S
(a vector ui is a reduced ρ-dimensional representation of the i-th
NXDomain).

[4] : Cluster the vectors (i.e., the NXDomains) {ui}i=1,..,k using
the X-means algorithm

OUTPUT: Clusters of NXDomains
Algorithm 1: Spectral clustering of NXDomains.

that query only one NXDomain to reduce the dimension-
ality of the matrix, since they are extremely unlikely to
be running a DGA given the low volume of NXDomains
they produce. Let a matrix element Mi, j = 0, if host hi
did not query NXDomain n j. Conversely, letMi, j = wi if
hi did query n j, where wi is a weight.
All non-zero entries related to a host hi are assigned

the same weight wi ∼ 1
ki , where ki is the number of NX-

Domains queried by host hi. Clearly, M can be seen as a
representation of a bipartite graph, in which a host ver-
tex Vhi is connected to an NXDomains vertex Vnj with an
edge of weight wi if host hi queried NXDomain n j dur-
ing the epoch under consideration. The intuition behind
the particular method we use to compute the weights wi
is that we expect that the higher the number of unique
NXDomains queried by a host hi (i.e., the higher ki) the
less likely the host is “representative” of the NXDomains
it queries. This is in a way analogous to the inverse doc-
ument frequency used in the text mining domain [1, 7].
Once M is computed, we apply a graph partitioning

strategy based on spectral clustering [21, 22], as sum-
marized in Algorithm 1. As a first step, we compute
the first ρ eigenvectors of M (we use ρ = 15 in our
experiments), and then we map each NXDomain (each
column of M) into a ρ-dimensional vector. In effect,
this mapping greatly reduces the dimensionality of the
NXDomain vectors from the total number of hosts (the
number of rows in M) to ρ . We then used the obtained
ρ-dimensional NXDomain representations and apply X-
means to cluster the NXDomains based on their “host as-
sociations”. Namely, NXDomains are grouped together
if they have been queried by a similar set of hosts.

4.1.4 Cluster Correlation
We now have two complementary views of how the

NXDomains should be grouped based on two different
definitions of similarity between domain names. Nei-

ther view is perfect, and the produced clusters may still
contain noise. Correlating the two results helps filter the
noise and output clusters of NXDomains that are more
likely to be generated by a DGA. Cluster correlation is
performed in the following way.
Let A = {A1, ..,An} be the set of NXDomain clus-

ters obtained by using statistical features, as described
in Section 4.1.2, and B = {B1, ..,Bm} be the set of NX-
Domain clusters derived from the bipartite graph parti-
tioning approach discussed in Section 4.1.3. We com-
pute the intersection between all possible pairs of clus-
ters Ii, j = Ai ∩ Bj, for i = 1, ..,n and j = 1, ..,m. All
correlated clusters Ii, j that contain less than a predefined
number λ of NXDomains (i.e., |Ii, j| < λ) are discarded,
while the remaining correlated clusters are passed to the
DGA filtering module described in Section 4.2. Clusters
that are not sufficiently agreed upon by the two cluster-
ing approaches are not considered for further processing.
We empirically set λ = 40 in preliminary experiments.

4.2 DGA Filtering
The DGA filtering module receives the NXDomain

clusters from the clustering module. This filtering step
compares the newly discovered NXDomain clusters to
domains generated by known DGAs that we have al-
ready discovered and modeled. If the NXDomains in
a correlated cluster Ii, j are classified as being generated
by a known DGA, we discard the cluster Ii, j. The rea-
son is that the purpose of the DGA Discovery module is
to find clusters of NXDomains that are generated (with
high probability) by a new, never before seen DGA. At
the same time, this filtering step is responsible for deter-
mining if a cluster of NXDomains is too noisy, i.e., if it
likely contains a mix of DGA and “non-DGA” domains.
To this end, we leverage the DGA Classifier described

in detail in Section 5. At a high level, we can treat the
DGA Classifier as a function that takes as input a set NXk
of NXDomains, and outputs a set of tuples {(lt ,st)}t=1..c,
where li is a label (e.g., DGA-Conficker.C), and si is
a score that indicates how confident the classifier is on
attributing label li to NXk, and c is the number of dif-
ferent classes (and labels) that the DGA Classifier can
recognize.
When the DGA filtering module receives a new cor-

related cluster of NXDomains Ii, j, it splits the clus-
ter into subsets of α NXDomains, and then passes
each of these subsets to the DGA Classifier. As-
sume Ii, j is divided into n different subsets. From the
DGA Classifier, we obtain as a result n sets of tuples
{{(lt ,st)}

(1)
t=1..c,{(lt ,st)}

(2)
t=1..c, ...,{(lt ,st)}

(n)
t=1..c}.

First, we consider for each set of tuples {(lt ,st)}
(k)
t=1..c

with k = 1, ..,n, the label l̂(k) that was assigned the max-
imum score. We consider a cluster Ii, j as too noisy if
the related labels l̂(k) are too diverse. Specifically, a

cluster is too noisy when the majority label among the
l̂(k),k = 1, ..n was assigned to less than θma j = 75% of
the n domain subsets. The clusters that do not pass the
θma j “purity” threshold will be discarded. Furthermore,
NXDomain clusters whose majority label is the Legit-
imate label will also be discarded.
For each remaining cluster, we perform an additional

“purity” check. Let the majority label for a given cluster
Ii, j be l∗. Among the set {{(lt ,st)}

(k)
t=1..c}k=1..n we take all

the scores st whose related lt = l∗. That is, we take the
confidence score assigned by the classifier to the domain
subsets that have been labeled as l∗, and then we compute
the average µ(st) and the variance σ2(st) of these scores
(notice that the scores st are in [0,1]). We discard clusters
whose σ2(st) is greater than a predefined threshold θσ =
0.001, because we consider the domains in the cluster as
not being sufficiently similar to the majority label class.
At this point, if µ(st)< θµ , with θµ = 0.98, we deem

the NXDomain cluster to be not similar enough to the
majority label class, and instead we label it as “new
DGA” and pass it to the DGA Modeling module. On the
other hand, if µ(st) ≥ θµ , we confirm the majority label
class (e.g., DGA-Conficker.C) and do not consider it
further.
The particular choice for the values of the above men-

tioned thresholds are motivated in Section 7.2.

5 DGA Classification and C&C Detection
Once a new DGA is reported by the DGA Discov-

ery module, we use a supervised learning approach to
learn how to identify hosts that are infected with the re-
lated DGA-based malware by analyzing the set of NX-
Domains they generate. To identify compromised hosts,
we collect the set of NXDomains NXhi generated by a
host, hi, and we ask the DGA Classifier whether NXhi
likely “belongs” to a previously seen DGA or not. If the
answer is yes, hi is considered to be compromised and
will be labeled with the name of the (suspected) DGA-
bot that it is running.
In addition, we aim to build a classifier that can ana-

lyze the set of active domain names, say ADhi , resolved
by a compromised host hi and reduce it to a smaller sub-
set CChi ⊂ ADhi of likely C&C domains generated by
the DGA running on hi. Finally, the set CChi may be
manually inspected to confirm the identification of C&C
domain(s) and related IPs. In turn, the list of C&C IPs
may be used to maintain an IP blacklist, which can be
employed to block C&C communications and mitigate
the effects of the malware infection. We now describe
the components of the DGA classification and C&C de-
tection module in more detail.

5.1 DGA Modeling
As mentioned in Section 4.2, the NXDomain clusters

that pass the DGA Filtering and do not fit any known
DGA model are (automatically) assigned a New-DGA-
vX label, where X is a unique identifier. At this point,
we build two different statical models representative of
New-DGA-vX: (1) a statistical multi-class classifier that
can assign a specific DGA label to the set of NXDomains
generated by a host hi and (2) a Hidden Markov Model
(HMM) that can compute the probability that a single
active domain queried by hi was generated by the DGA
running on the host, thus producing a list of candidate
C&C domains.
The DGA Modeling module takes as input the follow-

ing information: (1) a list of popular legitimate domain
names extracted from the top 10,000 domains according
to alexa.com; (2) the list of NXDomains generated
by running known DGA-bots in a controlled environ-
ment (see Section 6); (3) the clusters of NXDomains re-
ceived from the DGA Discovery module. Let NX be one
such newly discovered cluster of NXDomains. Because
in some cases NX may contain relatively few domains,
we attempt to extend the set NX to a larger set NX ′ that
can help build better statistical models for the new DGA.
To this end, we identify all hosts that “contributed” to
the NXDomains clustered in NX from our sparse asso-
ciation matrix M and we gather all the NXDomains they
generated during an epoch. For example, for a given host
hi that generated some of the domains clustered in NX ,
we gather all the other NXDomains domains NX ′

hi gen-
erated by hi. We then add the set NX ′ =

⋃
i NX ′

hi to the
training dataset (marked with the appropriate new DGA
label). The reader may at this point notice that the set
NX ′

hi may contain not only NXDomains generated by a
host hi due to running a DGA, but it may also include
NXDomains “accidentally’ generated by hi. Therefore,
this may introduce some noisy instances into the training
dataset. However, the number of “accidental” NXDo-
mains is typically very small, compared to the number of
NXDomains generated by a DGA. Therefore, we rely on
the generalization ability of the statistical learning algo-
rithms we use to smooth away the effects of this potential
source of noise. This approach works well in practice, as
we will show in Section 7.

5.2 DGA Classifier
The DGA Classifier is based on a multi-class version

of the Alternating Decision Trees (ADT) learning algo-
rithm [9]. ADT leverages the high classification accu-
racy obtained by Boosting [17], while producing com-
pact classification rules that can be more easily inter-
preted.
To detect hosts that are compromised with DGA-based

malware, we monitor all NXDomains generated by each

host in the monitored network and periodically send this
information to the DGA Classifier. Given a set NXhi
of NXDomains generated by host hi, we split NXhi into
subsets of length α , and from each of these subsets we
extract a number of statistical features, as described in
Section 4.1.1 If one of these subsets of NXDomains is
labeled by the DGA Classifier as being generated by a
given DGA, we mark host hi as compromised and we add
its IP address and the assigned DGA label to a malware
detection report.

5.3 C&C Detection
The C&C Detection module is based on Hidden

Markov Models (HMM) [28]. We use one distinct HMM
per DGA. Given the set NXD of domains generated by
a DGA D , we consider each domain d ∈ NXD sepa-
rately, and feed these domains to an HMM for training.
The HMM sees the domain names simply as a sequence
of characters, and the result of the training is a model
HMMD that given a new domain name s in input will
output the likelihood that s was generated by D .
We use left-to-right HMM as they are used in prac-

tice to decrease the complexity of the model, effectively
mitigating problems related to under-fitting. The HMM’s
emission symbols are represented by the set of characters
allowed in valid domain names (i.e., alphabetic charac-
ters, digits, ‘ ’, ‘-’, and ‘.’). We set the number of hidden
states to be equal to the average length of the domain
names in the training dataset.
During operation, the C&CDetectionmodule receives

active domain names queried by hosts that have been pre-
viously classified by the DGA Classifier as being com-
promised with a DGA-based malware. Let hi be one such
host, andD be the DGA running on hi. The C&C Detec-
tion module will send every domain s resolved by hi to
HMMD , which will compute a likelihood score f (s). If
f (s)> θD , s is flagged as a good candidate C&C domain
for DGA D .
The threshold θD can be learned during the training

phase. First, we train the HMM with the set NXD . Then,
we use a set L of legitimate “non-DGA” domains from
Alexa. For each domain l ∈ L, we compute the likelihood
f (l) and set the threshold θD so to obtain a maximum
target false positive rate (e.g., max FPs=1%).

6 Data Collection
In this section we provide an overview of the amount

of NXDomain traffic we observed during a period of fif-
teen consecutive months (our evaluation period), start-
ing on November 1st, 2010 and ending on January 15th,
2012. Afterwards, we discuss how we collected the do-
main names used to train and test our DGA Classifier
(see Section 5).

Figure 2: Observations from NXDomain traffic collected below a set of ISP recursive DNS servers over a 439 day window.

6.1 NXDomain Traffic
We evaluated Pleiades over a 15-month period against

DNS traffic obtained by monitoring DNS messages
to/from a set of recursive DNS resolvers operated by a
large North American ISP. These servers were physically
located in the US, and served (in average) over 2 million
client hosts per day1. Our monitoring point was “below”
the DNS servers, thus providing visibility on the NXDo-
mains generated by the individual client hosts.
Figure 2(a) reports, per each day, (1) the number of

NXDomains as seen in the raw DNS traffic, (2) the num-
ber of distinct hosts that in the considered day query at
least one NXDomains, and (3) the number of distinct
(de-duplicated) NXDomains (we also filter out domain
names that do not have a valid effective TLD [15,19,20]).
The abrupt drop in the number of NXDomains and hosts
(roughly a 30% reduction) experienced between 2011-
03-24 and 2011-06-17 was due to a configuration change
at the ISP network.
On average, we observed about 5 millions (raw) NX-

Domains, 187,600 distinct hosts that queried at least one
NXDomains, and 360,700 distinct NXDomains overall,
per each day. Therefore, the average size of the associ-
ation matrix M used to perform spectral clustering (see
Section 4.1.3) was 187,600 × 360,700. However, it is
worth noting thatM is sparse and can be efficiently stored
in memory. In fact, the vast majority (about 90%) of
hosts query less than 10 NXDomains per day, and there-
fore most rows in M will contain only a few non-zero
elements. This is shown in Figure 2(b), which reports
the cumulative distribution function (CDF) for the vol-
ume of NXDomains queried by a host in the monitored
network. On the other hand, Figure 2(c) shows the CDF
for the number of hosts that query an NXDomain (this
relates directly to the sparseness of M according to its

1We estimated the number of hosts by computing the average num-
ber of distinct client IPs seen per day.

columns).

6.2 Ground Truth
In order to generate the ground truth to train and eval-

uate the DGA Classifier (Section 5), we used a sim-
ple approach. To collect the NXDomains generated by
known DGA-based malware we used two different meth-
ods. First, because the DGA used by different variants of
Conficker and by Murofet are known (derived through
reverse-engineering), we simply used the respective al-
gorithms to generate a set of domain names from each
of these botnets. To obtain a sample set of domains gen-
erated by Bobax and Sinowal, whose exact DGA algo-
rithm is not known (at least not to us), we simply ex-
ecuted two malware samples (one per botnet) in a VM-
based malware analysis framework that only allows DNS
traffic2, while denying any other type of traffic. Over-
all we collected 30,000 domains generated by Conficker,
26,078 fromMurofet, 1,283 from Bobax and, 1,783 from
Sinowal.
Finally, we used the top 10,000 most popular domains

according to alexa.com, with and without the www.
prefix. Therefore, overall we used 20,000 domain names
to represent the “negative” (i.e., “non-DGA”) class dur-
ing the training and testing of the DGA Classifier.

7 Analysis
In this section, we present the experimental results of

our system. We begin by demonstrating Pleiades’ mod-
eling accuracy with respect to known DGAs like Con-
ficker, Sinowal, Bobax and Murofet. Then, we elaborate
on the DGAs we discovered throughout the fifteen month
NXDomain monitoring period. We conclude the section
by summarizing the most interesting findings from the
twelve DGAs we detected. Half of them use a DGA al-
gorithm from a known malware family. The other half,

2We only allowed UDP port 53.

Table 1: Detection results (in %) using 10-fold cross validation
for different values of α .

α = 5 NXDomains α = 10 NXDomains
Class TPrate FPrate AUC TPrate FPrate AUC

Bobax 95 0.4 97 99 0 99
Conficker 98 1.4 98 99 0.1 99
Sinowal 99 0.1 98 100 0 100
Murofet 98 0.7 98 99 0.2 99
Benign 96 0.7 97 99 0.1 99

to the best of our knowledge, have no known malware
association.

7.1 DGA Classifier’s Detection Results
In this section, we present the accuracy of the DGA

classifier. We bootstrap the classifier with NXDo-
mains from Bobax, Sinowal, Conficker-A, Conficker-B,
Conficker-C and Murofet. We test the classifier in two
modes. The first mode is bootstrapped with a “super”
Conficker class composed of an equal number of samples
from Conficker-A, Conficker-B and Conficker-C classes
and another with each Conficker variant as its own class.
As we mentioned in Section 5.2, the DGA classifier is
based on a multi-class version of the Alternating Deci-
sion Trees (ADT) learning algorithm [9]. We build the
vectors for each class by collecting NXDomains from
one day of Honeypot traffic (in the case of Sinowal and
Bobax) and one day of NXDomains produced by the
DGAs for Conficker-A, Conficker-B, Conficker-C and
Murofet. Finally, the domain names that were used to
represent the benign class were the first 10,000 Alexa
domain names with and without the www. child labels.
From the raw domain names in each of the classes,

we randomly selected 3,000 sets of cardinality α . As a
reminder, the values of α that we used were two, five,
ten and 30. This was to build different training datasets
in order to empirically decide which value of α would
provide the best separation between the DGA models.
We generated additional testing datasets. The domain

names we used in this case were from each class as in
the case of the training dataset but we used different days.
We do that so we get the minimum possible domain name
overlap between the training and testing datasets. We
evaluate the training datasets using two methods: 10-fold
cross validation on the training dataset and by using the
testing datasets computed from domains collected on dif-
ferent days. Both methods gave us very similar results.
Our system performed the worst in the case of the 10-
fold cross validation, therefore we chose to present this
worst-case scenario.
In Table 1, we can see the detection results using two

values for α , five and ten. We omit the results for the
other values due to space limitations. The main confu-

sion between the classes was observed in the datasets
that contained separate Conficker classes, specifically
between the classes of Conficker-A and Conficker-B. To
address this problem, we created a generic Conficker
class that had an equal number of vectors from each Con-
ficker variant. This merging of the Conficker variants
into a single “super” class allowed the DGA classifier
to correctly classify 99.72% (Table 1) of the instances
(7,986 correctly classified vs 22 incorrectly classified).
Using the datasets with the five classes of DGAs, the
weighted average of the TPrates and FPrates were 99.7%
and 0.1%, respectively. As we see in Table 1, α = 5 per-
forms reasonably well, but with a higher rate of FPs.

7.2 NXDomain Clustering Results
In this section, we will discuss results from the DGA

discovery module. In particular, we elaborate on the se-
lection of the thresholds used, the unique clusters identi-
fied and the false alerts the DGA discovery module pro-
duced over the duration of our study.

7.2.1 Correlation Thresholds
In order to set the thresholds θma j and θσ defined

in Section 4.2, we spent the first five days of Novem-
ber 2010 labeling the 213 produced clusters as DGA re-
lated (Positive) or noisy (Negative). For this experiment,
we included all produced clusters without filtering out
those with θµ=98% (or higher) “similarity” to an already
known one (see Section 4.2). In Figure 3, we can see in
the Y-axis the percentage values for the dominant (non-
benign) class in every cluster produced during these five
days. In the X-axis we can see the variance that each
dominant class had within each cluster. The results show
that the Positive and Negative assignments had a clear
cut, which we can achieve by setting the thresholds as
θma j = 75% and θσ = 0.001. These thresholds gave us
very good results throughout the duration of the experi-
ments. As we will discuss in Section 7.2.3, the DGA dis-
covery module falsely reported only five benign clusters
over a period of 15 months. All falsely reported clusters
had variance very close to 0.001.

7.2.2 New DGAs
Pleiades began clustering NXDomain traffic on the

first day of November 2010. We bootstrapped the DGA
modeler with domain names from already known DGAs
and also a set of Alexa domain names as the benign class.
In Table 2, we present all unique clusters we discovered
throughout the evaluation period. The “Malware Fam-
ily” column simply maps the variant to a known mal-
ware family if possible. We discover the malware family
by checking the NXDomains that overlap with NXDo-
mains we extracted from traffic obtained from a malware
repository. Also, we manually inspected the clusters with
the help of a security company’s threat team. The “First

Figure 3: Thresholds θma j and θσ from the first five days of
November 2010.

Figure 4: A sample of ten NXDomain for each DGA cluster that
we could not associate with a known malware family.

Seen” column denotes the first time we saw traffic from
each DGA variant. Finally, the “Population on Discov-
ery” column shows the variant population on the discov-
ery day. We can see that we can detect each DGA variant
with an average number of 32 “infected hosts” across the
entire statewide ISP network coverage.

Table 2: DGAs Detected by Pleiades.

Population
Malware Family First Seen on Discovery

Shiz/Simda-C [32] 03/20/11 37
Bamital [11] 04/01/11 175
BankPatch [5] 04/01/11 28
Expiro.Z [8] 04/30/11 7
Boonana [41] 08/03/11 24
Zeus.v3 [25] 09/15/11 39
New-DGA-v1 01/11/10 12
New-DGA-v2 01/18/11 10
New-DGA-v3 02/01/11 18
New-DGA-v4 03/05/11 22
New-DGA-v5 04/21/11 5
New-DGA-v6 11/20/11 10

As we see in Table 2, Pleiades reported six vari-
ants that belong to known DGA-enabled malware fami-
lies [5,8,11,25,32,41]. Six more variants of NXDomains
were reported and modeled by Pleiades but for these, to
the best of our knowledge, no known malware can be as-
sociated with them. A sample set of 10 domain names
for each one of these variants can be seen in Figure 4.
In the 15 months of our observations we observed an

average population of 742 Conficker infected hosts in the
ISP network. Murofet had the second largest population
of infected hosts at 92 per day, while the Boonana DGA
comes third with an average population of 84 infected
hosts per day. The fastest growing DGA is Zeus.v3 with
an average population of 50 hosts per day, however, dur-
ing the last four days of the experiments the Zeus.v3
DGA had an average number of 134 infected hosts. It

is worth noting the New-DGA-v1 had an average of 19
hosts per day, the most populous of the newly identified
DGAs.

7.2.3 False Reports on New DGAs
During our evaluation period we came across five cat-

egories of clusters falsely reported as new DGAs. In all
of the cases, we modeled these classes in the DGA mod-
eler as variants of the benign class. We now discuss each
case in detail.
The first cluster of NXDomains falsely reported by

Pleiades were random domain names generated by
Chrome [16,45]. Each time the Google Chrome browser
starts, it will query three “random looking” domain
names. These domain names are issued as a DNS check,
so the browser can determine if NXDomain rewriting is
enabled. The “Chrome DGA” was reported as a vari-
ant of Bobax from Pleiades. We trained a class for this
DGA and flagged it as benign. One more case of test-
ing for NXDomain rewriting was identified in a brand of
wireless access points. Connectify3, offers wireless hot-
spot functionality and one of their configuration option
enables the user to hijack the ISP’s default NXDomain
rewriting service. The device generates a fixed number
of NXDomains to test for rewriting.
Two additional cases of false reports were triggered

by domain names from the .it and .edu TLDs. These
domain names contained minor variations on common
words (i.e. repubblica, gazzetta, computer, etc.). Domain
names that matched these clusters appeared only for two
days in our traces and never again. The very short lived
presence of these two clusters could be explained if the
domain names were part of a spam-campaign that was
remediated by authorities before it became live.
The fifth case of false report originated from domain

names under a US government zone and contained the

3www.connectify.me

Table 3: TPs (%) for C&C detection (1,000 training sequences).

FPs (%)
botnet 0.1 0.5 1 3 5 10
Zeus.v3 99.9 99.9 99.9 99.9 99.9 99.9
Expiro.Z 33.03 64.56 78.23 91.77 95.23 98.67
Bamital 100 100 100 100 100 100
Shiz 0 1.64 21.02 96.58 100 100
Boonana 3.8 10.69 15.59 27.67 35.05 48.43
BankPatch 56.21 70.77 93.18 99.9 99.91 99.94

string wpdhsmp. Our best guess is that these are inter-
nal domain names that were accidentally leaked to the re-
cursive DNS server of our ISP. Domain names from this
cluster appeared only for one day. This class of NXDo-
mains was also modeled as a benign variant. It is worth
noting that all falsely reported DGA clusters, excluding
the Chrome cluster, were short lived. If operators are
willing to wait a few days until a new DGA cluster is
reported by Pleiades, these false alarms would not have
been raised.

7.3 C&C Detection
To evaluate the effectiveness of the C&C Detection,

we proceeded as follows. We considered the six new
DGAs which we were able to attribute to specific mal-
ware, as shown in Table 3. Let NXi be the set of NXDo-
mains collected by the DGA Discovery (Section 4) and
DGA Modeling (Section 5.1) modules for the i-th DGA.
For each DGA, we set aside a subset NXtraini ⊂ NXi of
NXDomains to train an HMMi model. Then we use the
remaining NXtesti = NXi −NXtraini to compute the true
positive (TP) rate of HMMi, and a set A that consists
of 602,969 unique domain names related to the consis-
tently popular domain names according to alexa.com
to compute the false positive (FP) rate. To obtain A
we first consider all domain names that have been con-
sistently ranked in the top 100,000 popular domains by
alexa.com for approximately one year. This gave us a
set T of about 60,000 “stable” popular domain names,
which we consider as legitimate domains. Then, we
monitored the stream of successful DNS queries in a
large live network for a few hours, and we added to A
all the domain names whose effective 2LD is in T .
We performed experiments with a varying number

c = |NXtraini | of training samples. Specifically, we set c
equal to 100, 200, 500, 1,000, 2,000, 5,000, and 10,000.
We then computed the trade-off between TPs and FPs for
different detection thresholds. In the interest of space, we
report only the results for c=1,000 in Table 3. In general,
the results improve for increasing numbers of training in-
stances. We set the detection threshold so as to obtain an
FP rate equal to 0.1%, 0.5%, 1%, 3%, 5%, and 10%. As
we can see, at FP=1% we obtained a high (> 93%) TP
rate for three out of six DGAs, and relatively good results

(> 78%) in five out of six cases. At FP=3% we have high
TP rate (> 91%) in five out of six cases.
As mentioned in Section 3, the C&C Detection mod-

ule reduces the set of domain names successfully re-
solved by a host h that have been labeled as compro-
mised with DGA-malware to a smaller set of good can-
didate C&C domains generated by the DGA. The results
in Table 3 show that if we rank the domains resolved by
h according to the likelihood assigned by the HMM, in
most cases we will only need to inspect between 1/100
to 3/100 of the active domains queried by h to discover
the C&C.

7.4 Case Studies
7.4.1 Zeus.v3
In September 2011, Pleiades detected a new DGA

that we linked to the Zeus.v3 variant a few weeks later.
The domain names collected from the machines compro-
mised by this DGA-malware are hosted in six different
TLDs: .biz,.com,.info ,.net ,.org and .ru. Ex-
cluding the top level domains, the length of the domain
names generated by this DGA are between 33 and 45
alphanumeric characters. By analyzing one sample of
the malware4 we observed that its primary C&C infras-
tructure is P2P-based. If the malware fails to reach its
P2P C&C network, it follows a contingency plan, where
a DGA-based component is used to try to recover from
the loss of C&C communication. The malware will then
resolve pseudo-random domain names, until an active
C&C domain name is found.
To date, we have discovered 12 such C&C domains.

Over time, these 12 domains resolved to five different
C&C IPs hosted in four different networks, three in the
US (AS6245, AS16626 and AS3595) and one in the
United Kingdom (AS24931). Interestingly, we observed
that the UK-based C&C IP address remained active for a
very short period of time of only a few minutes, from Jan
25, 2012 12:14:04 EST to Jan 25, 2012 12:22:37
EST. The C&C moved from a US IP (AS16626) to the
UK (AS24931), and then almost immediately back to the
US (AS3595).

7.4.2 BankPatch
We picked the BankPatch DGA cluster as a sample

case for analysis since this botnet had been active for
several months during our experiments and the infected
population continues to be significant. The C&C infras-
tructure that supports this botnet is impressive. Twenty
six different clusters of servers acted as the C&Cs for
this botnet. The botnet operators not only made use of
a DGA but also moved the active C&Cs to different net-
works every few weeks (on average). During our C&C

4Sample MD5s: 8f60afa9ea1e761edd49dfe012c22cbf and
ccec69613c71d66f98abe9cc7e2e20ef.

discovery process, we observed IP addresses controlled
by a European CERT. This CERT has been taking over
domain names from this botnet for several months. We
managed to cross-validate with them the completeness
and correctness of the C&C infrastructure. Complete in-
formation about the C&C infrastructure can be found in
Table 4.
The actual structure of the domain name used

by this DGA can be separated into a four byte pre-
fix and a suffix string argument. The suffix string
arguments we observed were: seapollo.com,
tomvader.com, aulmala.com, apon-
tis.com, fnomosk.com, erhogeld.com,
erobots.com, ndsontex.com, rte-
hedel.com, nconnect.com, edsafe.com,
berhogeld.com, musallied.com, newna-
cion.com, susaname.com, tvolveras.com
and dminmont.com.
The four bytes of entropy for the DGA were provided

by the prefix. We observe collisions between NXDo-
mains from different days, especially when only one suf-
fix argument was active. Therefore, we registered a small
sample of ten domain names at the beginning of 2012 in
an effort to obtain a glimpse of the overall distribution of
this botnet. Over a period of one month of monitoring
the sink-holed data from the domain name of this DGA,
this botnet has infected hosts in 270 different networks
distributed across 25 different countries. By observing
the recursive DNS servers from the domain names we
sinkholed, we determined 4,295 were located in the US.
The recursives we monitored were part of this list and we
were able to measure 86 infected hosts (on average) in
the network we were monitoring. The five countries that
had the most DNS resolution requests for the sinkholed
domain names (besides the US) were Japan, Canada,
the United Kingdom and Singapore. The average num-
ber of recursive DNS servers from these countries that
contacted our authorities was 22 — significantly smaller
than the volume of recursive DNS servers within the US.

8 Discussion and Limitations
Pleiades has some limitations. For example, once a

new DGA is discovered, Pleiades can build fairly accu-
rate statistical models of how the domains generated by
the DGA “look like”, but it is unable to learn or recon-
struct the exact domain generation algorithm. Therefore,
Pleiades will generate a certain number of false positives
and false negatives. However, the results we presented
in Table 1 show that Pleiades is able to construct a very
accurate DGA Classifier module, which produces very
few false positives and false negatives for α = 10. At
the same time, Table 3 shows that the C&C Detection
module, which attributes a single active domain name
to a given DGA, and also works fairly well in the ma-

Table 4: C&C Infrastructure for BankPatch.

IP addresses CC Owner

146.185.250.{89-92} RU Petersburg Int.
31.11.43.{25-26} RO SC EQUILIBRIUM
31.11.43.{191-194} RO SC EQUILIBRIUM
46.16.240.{11-15} UA iNet Colocation
62.122.73.{11-14,18} UA “Leksim” Ltd.
87.229.126.{11-16} HU Webenlet Kft.
94.63.240.{11-14} RO Com Frecatei
94.199.51.{25-18} HU NET23-AS 23VNET
94.61.247.{188-193} RO Vatra Luminoasa
88.80.13.{111-116} SE PRQ-AS PeRiQuito
109.163.226.{3-5} RO VOXILITY-AS
94.63.149.{105-106} RO SC CORAL IT
94.63.149.{171-175} RO SC CORAL IT
176.53.17.{211-212} TR Radore Hosting
176.53.17.{51-56} TR Radore Hosting
31.210.125.{5-8} TR Radore Hosting
31.131.4.{117-123} UA LEVEL7-AS IM
91.228.111.{26-29} UA LEVEL7-AS IM
94.177.51.{24-25} UA LEVEL7-AS IM
95.64.55.{15-16} RO NETSERV-AS
95.64.61.{51-54} RO NETSERV-AS
194.11.16.133 RU PIN-AS Petersburg
46.161.10.{34-37} RU PIN-AS Petersburg
46.161.29.102 RU PIN-AS Petersburg
95.215.{0-1}.29 RU PIN-AS Petersburg
95.215.0.{91-94} RU PIN-AS Petersburg
124.109.3.{3-6} TH SERVENET-AS-TH-AP
213.163.91.{43-46} NL INTERACTIVE3D-AS
200.63.41.{25-28} PA Panamaserver.com

jority of cases. Unfortunately, there are some scenarios
in which the HMM-based classification has difficulties.
We believe this is because our HMM considers domain
names simply to be sequences of individual characters.
In our future work, we plan to experiment with 2-grams,
whereby a domain name will be seen as a sequence of
pairs of characters, which may achieve better classifica-
tion accuracy for the harder to model DGAs.
For example, our HMM-based detector was unable to

obtain high true positive rates on the Boonana DGA. The
reason is that the Boonana DGA leverages third-level
pseudo-random domain names under several second-
level domains owned by dynamic DNS providers. Dur-
ing our evaluation, the hosts infected with Boonana con-
tacted DGA-generated domain names under 59 different
effective second-level domains. We believe that the high
variability in the third-level domains and the high num-
ber of effective 2LDs used by the DGA make it harder
to build a good HMM, thus causing a relatively low
number of true positives. However, in a real-world de-
ployment scenario, the true positive rate may be signif-
icantly increased by focusing on the dynamic DNS do-
mains queried by the compromised hosts. For example,
since we know that Boonana only uses dynamic DNS
domains, we can filter out any other NXDomains, and
avoid passing them to the HMM. In this scenario the

HMM would receive as an input only dynamic DNS do-
mains, which typically represent a fraction of all active
domains queried by each host, and consequently the ab-
solute number of false positives can be significantly re-
duced.
As we mentioned in Section 3, detecting active DGA-

generated C&C domains is valuable because their re-
solved IP addresses can be used to update a C&C IP
blacklist. In turn, this IP blacklist can be used to block
C&C communications at the network edge, thus pro-
viding a way to mitigate the botnet’s malicious activ-
ities. Clearly, for this strategy to be successful, the
frequency with which the C&C IP addresses change
should be lower than the rate with which new pseudo-
random C&C domain names are generated by the DGA.
This assumption holds for all practical cases of DGA-
based malware we encountered. After all, the generation
of pseudo-random domains mainly serves the purpose
of making the take-down of loosely centralized botnets
harder. However, one could imagine “hybrid” botnets
that use DGA-generated domains to identify a set of peer
IPs to bootstrap into a P2P-based C&C infrastructure.
Alternatively, the DGA-generated C&C domains may be
flux domains, namely domain names that point to a IP
fluxing network. It is worth noting that such sophisti-
cated “hybrid” botnets may be quite complex to develop,
difficult to deploy, and hard to manage successfully.
Another potential limitation is due to the fact that

Pleiades is not able to distinguish between different bot-
nets whose bot-malware use the same DGA algorithm.
In this case, while the two botnets may be controlled by
different entities, Pleiades will attribute the compromised
hosts within the monitored network to a single DGA-
based botnet.
One limitation of our evaluation method is the ex-

act enumeration of the number of infected hosts in the
ISP network. Due to the location of our traffic moni-
toring sensors (below the recursive DNS server), we can
only obtain a lower bound estimate on the number of in-
fected hosts. This is because we have visibility of the IP
addresses within the ISP that generate the DNS traffic,
but lack additional information about the true number of
hosts “behind” each IP. For example, an IP address that
generates DNS traffic may very well be a NAT, firewall,
DNS server or other type of complex device that behaves
as a proxy (or relay point) for other devices. Also, ac-
cording to the ISP, the DHCP churn rate is relatively low,
and it is therefore unlikely that we counted the same in-
ternal host multiple times.
In the case of Zeus.v3, the DGA is used as a backup

C&C discovery mechanism, in the event that the P2P
component fails to establish a communication channel
with the C&C. The notion of having a DGA compo-
nent as a redundant C&C discovery strategy could be

used in the future by other malware. A large number
of new DGAs may potentially have a negative impact on
the supervised modules of Pleiades, and especially on the
HMM-based C&C detection. In fact, a misclassification
by the DGA Classifier due to the large number of classes
among which we need to distinguish may misguide the
selection of the right HMM to be used for C&C detec-
tion, thus causing an increase in false positives. In our
future work we plan to estimate the impact of such mis-
classifications on the C&C detection accuracy, and inves-
tigate whether using auxiliary IP-based information (e.g.,
IP reputation) can significantly improve the accuracy in
this scenario.

As the internals of our system become public, some
botnets may attempt to evade both the DGA discovery
and C&C detection process. As we have already dis-
cussed, it is in the malware authors’ best interest to create
a high number of DGA-related NXDomains in order to
make botnet take-over efforts harder. However, the mal-
ware could at the same time generate NXDomains not re-
lated with the C&C discovery mechanism in an effort to
mislead our current implementation of Pleiades. These
noisy NXDomains may be generated in two ways: (1)
randomly, for example by employing a different DGA,
or (2) by using one DGA with two different seeds, one
of which is selected to generate noise. In case of (1), the
probability that they will be clustered together is small.
This means that these NXDomains will likely not be part
of the final cluster correlation process and they will not
be reported as new DGA-clusters. On the other hand,
case (2) might cause problems during learning, espe-
cially to the HMM, because the noisy and “true” NXDo-
mains may be intermixed in the same cluster, thus mak-
ing it harder to learn an accurate model for the domain
names.

9 Conclusion

In this paper, we presented a novel detection system,
called Pleiades, that is able to accurately detect machines
within a monitored network that are compromised with
DGA-based bots. Pleiades monitors traffic below the lo-
cal recursive DNS server and analyzes streams of un-
successful DNS resolutions, instead of relying on man-
ual reverse engineering of bot malware and their DGA
algorithms. Using a multi-month evaluation phase, we
showed that Pleiades can achieve very high detection ac-
curacy. Moreover, over the fifteen months of the oper-
ational deployment in a major ISP, Pleiades was able to
identify six DGAs that belong to known malware fami-
lies and six new DGAs never reported before.

References
[1] K. Aas and L. Eikvil. Text categorisation: A sur-

vey., 1999.

[2] abuse.ch. ZeuS Gets More Sophisticated Us-
ing P2P Techniques. http://www.abuse.ch/
?p=3499, 2011.

[3] M. Antonakakis, R. Perdisci, D. Dagon, W. Lee,
and N. Feamster. Building a dynamic reputation
system for DNS. In the Proceedings of 19th
USENIX Security Symposium (USENIX Security
’10), 2010.

[4] M. Antonakakis, R. Perdisci, W. Lee,
N. Vasiloglou, and D. Dagon. Detecting mal-
ware domains in the upper DNS hierarchy. In the
Proceedings of 20th USENIX Security Symposium
(USENIX Security ’11), 2011.

[5] BankPatch. Trojan.Bankpatch.C. http:
//www.symantec.com/security_
response/writeup.jsp?docid=
2008-081817-1808-99&tabid=2, 2009.

[6] L. Bilge, E. Kirda, C. Kruegel, and M. Balduzzi.
EXPOSURE: Finding malicious domains using
passive dns analysis. In Proceedings of NDSS,
2011.

[7] R. Feldman and J. Sanger. The text mining hand-
book: advanced approaches in analyzing unstruc-
tured data. Cambridge Univ Pr, 2007.

[8] R. Finones. Virus:Win32/Expiro.Z. http://
www.microsoft.com/security/portal/
Threat/Encyclopedia/Entry.aspx?
Name=Virus%3AWin32%2FExpiro.Z, 2011.

[9] Y. Freund and L. Mason. The alternating deci-
sion tree learning algorithm. In Proceedings of
the Sixteenth International Conference on Machine
Learning, ICML ’99, 1999.

[10] G. Gu, P. Porras, V. Yegneswaran, M. Fong, and
W. Lee. BotHunter: Detecting malware infection
through IDS-driven dialog correlation. In Proc.
USENIX Security, 2007.

[11] M. Geide. Another trojan bamital pattern. http:
//research.zscaler.com/2011/05/
another-trojan-bamital-pattern.
html, 2011.

[12] S. Golovanov and I. Soumenkov. TDL4 top
bot. http://www.securelist.com/en/
analysis/204792180/TDL4_Top_Bot,
2011.

[13] G. Gu, R. Perdisci, J. Zhang, and W. Lee. Bot-
Miner: clustering analysis of network traffic for
protocol- and structure-independent botnet detec-
tion. In USENIX Security, 2008.

[14] G. Gu, J. Zhang, and W. Lee. BotSniffer: Detecting
botnet command and control channels in network
traffic. In Network and Distributed System Security
Symposium (NDSS), 2008.

[15] J. Hermans. MozillaWiki TLD List. https://
wiki.mozilla.org/TLD_List, 2006.

[16] S. Krishnan and F. Monrose. Dns prefetching and
its privacy implications: when good things go bad.
In Proceedings of the 3rd USENIX conference on
Large-scale exploits and emergent threats: botnets,
spyware, worms, and more, LEET’10, pages 10–
10, Berkeley, CA, USA, 2010. USENIX Associa-
tion.

[17] L. I. Kuncheva. Combining Pattern Classifiers:
Methods and Algorithms. Wiley-Interscience,
2004.

[18] M. H. Ligh, S. Adair, B. Hartstein, and M. Richard.
Malware Analyst’s Cookbook and DVD, chapter 12.
Wiley, 2010.

[19] P. Mockapetris. Domain names - concepts
and facilities. http://www.ietf.org/rfc/
rfc1034.txt, 1987.

[20] P. Mockapetris. Domain names - implementation
and specification. http://www.ietf.org/
rfc/rfc1035.txt, 1987.

[21] M. Newman. Networks: an introduction. Oxford
University Press, 2010.

[22] A. Y. Ng, M. I. Jordan, and Y. Weiss. On spectral
clustering: Analysis and an algorithm. In Advances
In Neural Information Processing Systems, pages
849–856. MIT Press, 2001.

[23] P. Porras, H. Saidi, and V. Yegneswaran. An anal-
ysis of conficker’s logic and rendezvous points.
http://mtc.sri.com/Conficker/, 2009.

[24] D. Pelleg and A. W. Moore. X-means: Extending
k-means with efficient estimation of the number of
clusters. In Proceedings of the Seventeenth Inter-
national Conference on Machine Learning, ICML
’00, pages 727–734, San Francisco, CA, USA,
2000. Morgan Kaufmann Publishers Inc.

[25] C. POLSKA. ZeuS P2P+DGA variant
mapping out and understanding the threat.

http://www.cert.pl/news/4711/
langswitch_lang/en, 2012.

[26] P. Porras. Inside risks: Reflections on conficker.
Communications of the ACM, 52:23–24, October
2009.

[27] P. Porras, H. Saidi, and V. Yegneswaran. Conficker
C analysis. Technical report, SRI International,
Menlo Park, CA, April 2009.

[28] L. R. Rabiner. Readings in speech recognition.
chapter A tutorial on hidden Markov models and
selected applications in speech recognition. 1990.

[29] P. Royal. Analysis of the kraken botnet.
http://www.damballa.com/downloads/
r_pubs/KrakenWhitepaper.pdf, 2008.

[30] S. Shevchenko. Srizbi domain generator calculator.
http://blog.threatexpert.com/2008/
11/srizbis-domain-calculator.html,
2008.

[31] S. Shevchenko. Domain name gen-
erator for murofet. http://blog.
threatexpert.com/2010/10/
domain-name-generator-for-murofet.
html, 2010.

[32] SOPHOS. Mal/Simda-C. http:
//www.sophos.com/en-us/
threat-center/threat-analyses/
viruses-and-spyware/Mal˜Simda-C/
detailed-analysis.aspx, 2012.

[33] J. Stewart. Bobax trojan analysis. http:
//www.secureworks.com/research/
threats/bobax/, 2004.

[34] B. Stone-Gross, M. Cova, L. Cavallaro, B. Gilbert,
M. Szydlowski, R. Kemmerer, C. Kruegel, and
G. Vigna. Your botnet is my botnet: analysis of
a botnet takeover. In Proceedings of the 16th ACM
Conference on Computer and Communications Se-
curity, CCS ’09, pages 635–647, New York, NY,
USA, 2009. ACM.

[35] S. Stover, D. Dittrich, J. Hernandez, and S. Diet-
rich. Analysis of the storm and nugache trojans:
P2P is here. In USENIX ;login:, vol. 32, no. 6, De-
cember 2007.

[36] T.-F. Yen and M. K. Reiter. Are your hosts trading
or plotting? Telling P2P file-sharing and bots apart.
In ICDCS, 2010.

[37] R. Villamarin-Salomon and J. Brustoloni. Identi-
fying botnets using anomaly detection techniques
applied to dns traffic. In 5th Consumer Communi-
cations and Networking Conference, 2008.

[38] Wikipedia. The storm botnet. http://en.
wikipedia.org/wiki/Storm_botnet,
2010.

[39] J. Williams. What we know (and learned) from the
waledac takedown. http://tinyurl.com/
7apnn9b, 2010.

[40] J. Wolf. Technical details of
srizbi’s domain generation algorithm.
http://blog.fireeye.com/research/2008/11/technical-
details-of-srizbis-domain-generation-
algorithm.html, 2008. Retreived: April, 10
2010.

[41] J. Wong. Trojan:Java/Boonana. http:
//www.microsoft.com/security/
portal/Threat/Encyclopedia/Entry.
aspx?Name=Trojan%3AJava%2FBoonana,
2011.

[42] S. Yadav, A. K. K. Reddy, A. N. Reddy, and S. Ran-
jan. Detecting algorithmically generated malicious
domain names. In Proceedings of the 10th annual
Conference on Internet Measurement, IMC ’10,
pages 48–61, New York, NY, USA, 2010. ACM.

[43] S. Yadav and A. N. Reddy. Winning with dns
failures: Strategies for faster botnet detection. In
7th International ICST Conference on Security and
Privacy in Communication Networks, 2011.

[44] T.-F. Yen and M. K. Reiter. Traffic aggregation for
malware detection. In Proc. International confer-
ence on Detection of Intrusions and Malware, and
Vulnerability Assessment (DIMVA), 2008.

[45] B. Zdrnja. Google Chrome and (weird)
DNS requests. http://isc.sans.edu/
diary/Google+Chrome+and+weird+DNS+
requests/10312, 2011.

[46] J. Zhang, R. Perdisci, W. Lee, U. Sarfraz, and
X. Luo. Detecting stealthy P2P botnets using sta-
tistical traffic fingerprints. In Annual IEEE/IFIP
International Conference on Dependable Systems
and Networks - Dependable Computing and Com-
munication Symposium, 2011.

