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Abstract. Online advertising is a multi-billion dollar market, and there-
fore a target for abuse by Internet criminals. Prior work has shown
millions of dollars of advertisers’ capital are lost due to ad abuse and
focused on defense from the perspective of the end-host or the local net-
work egress point. We investigate the potential of using public threat
data to measure and detect adware and malicious affiliate traffic from
the perspective of demand side platforms, which facilitate ad bidding be-
tween ad exchanges and advertisers. Our results show that malicious ad
campaigns have statistically significant differences in traffic and lookup
patterns from benign ones, however, public blacklists can only label a
small percentage of ad publishers (0.27%), which suggests new lists ded-
icated to ad abuse should be created. Furthermore, we show malicious
infrastructure on ad exchanges can be tracked with simple graph analysis
and maliciousness heuristics.

1 Introduction

On-line advertisement is a complex ecosystem that enables one of the most pros-
perous Internet businesses. Naturally, it has become the target of abuse. Only
in the last few years are we beginning to grasp the scale of the economic loss for
advertisers from ad abuse [10,15,24,28]. Using armies of compromised machines
(i.e., botnets), sophisticated affiliate programs, and ad injection techniques, mil-
lions of dollars are stolen from advertisers. If we want to reduce abuse on the
Internet, we will have to eliminate the monetization opportunities attackers use.

For almost a decade, security researchers and network operators have studied
how to detect and stop advertisement abuse. The focus of past research efforts
has been on detecting ad abuse at the edge (i.e., the infected host), at the egress
point of a network, or “outside” of the ad ecosystem. Little is known, however,
about the network policies that are being enforced within the ad ecosystem,
especially during the ad bidding process. Advertisers do not want to display
ads on low quality publishers that may include automated visits from adware
and affiliate marketing entities, and thus they need to selectively respond to ad



bidding requests based on the reputation of the publishers. Unfortunately, little
work has been done to measure reputation of publisher domains.

In this paper, we examine if open source intelligence data from the security
community can be used to ascertain publisher reputation. To this end, we analyze
anonymized ad bidding requests between a large demand side platform (DSP)
in North America and six ad exchanges over a period of three months. Using
open source intelligence from public blacklists and malware execution traces, we
investigate the reputation properties of publishers in the advertisement bidding
process (Section 5). Our study makes the following key observations:
– We explain the ad bidding process and measure it in detail to improve the

network and security communities’ understanding of the advertising ecosys-
tem. These measurements include bidding request traffic from six large ad
exchanges for request volume, publisher domains, and client distribution.
We find that malicious publisher domains tend to be present on more ad
exchanges and reach more clients than non-blacklisted publisher domains
on average. These differences are statistically significant and suggest that
reputation systems for advertisement publishers are possible.

– We identify that of all publisher domains seen in the DSP, 13,324 (0.27%) are
on blacklists, which generate only 1.8% of bid requests, and 134,262 (2.74%)
are queried by malware. This underestimates the amount of ad abuse based
on other studies [14, 16], which has been measured as high as 30%. This
also indicates that traditional sources of maliciousness used in the security
community are insufficient to understand ad abuse seen from DSPs.

– Using graph analysis, we demonstrate how to track advertising infrastructure
over time. To focus on potentially malicious campaigns, we use a simple
suspiciousness heuristic based on open-source intelligence feeds. Using this
technique, we identify case studies that show ad network domains support
Potentially Unwanted Programs (PUP), rely on domain name generation
algorithms, and are occasionally used to distribute malware.

2 Background

In this section, we briefly describe the key components of the ad ecosystem and
the real-time bidding process.

2.1 Ad Ecosystem

Figure 1 gives an overview of the online advertising ecosystem. When a user
visits a publisher webpage (step 1, Figure 1) its elements are loaded (step 2),
during which the iFrame representing the ad inventory requests the ad server
for an ad to display (step 3). The ad server asks for an ad from the ad network
(step 4), and reports ad metrics for payment logging. An ad network can also sell
ad inventories to an ad exchange (step 5). If an ad request cannot be fulfilled,
it will be relayed to a Demand Side Platform provider (DSP) (step 6), and then
advertisers who work with the DSP can purchase the impression (scenario A).



User

Publisher Ad Server Ad ExchangeAd Network DSP Advertiser

3 4 5 6
A

D
e

v
ic

e
s

13

7
8910

11

12 Logs click

Logs
 impression

Web re
quest

1

2

Javascript

 response

Browser

Our Focus

Fig. 1: An overview of the online advertising ecosystem.

The advantage of using a DSP is that advertisers will have access to multiple ad
exchanges. In this paper, we focus on the vantage point of a DSP (scenario A).

The DSP, ad exchanges, and ad networks consolidate advertisers’ audience
target and budget information, and show the optimal ad back to the publisher’s
page (step 7 to 10). An impression is therefore fulfilled and logged. Impressions
are often charged according to the CPM (Cost Per Mille, or cost per thousand
impression). If the ad is clicked, the ad server will log it (step 11), and redirect
the user (step 12) to the page of the advertiser (step 13). In such an event, the
advertiser is charged for the click. The CPC (Cost Per Click) varies according
to the keywords of the webpage and the user category.

Publishers can resell (syndicate) the ads to other publishers. In turn, these
publishers can sell (subsyndicate) the ads further to other publishers. Syndication
enables the ads to reach a wider audience. Thus, there can be several redirections
among publishers before an ad request reaches the ad server (step 3).

2.2 Real-Time Bidding

Figure 2 shows a simplified view of the Real-Time Bidding (RTB) process. The
JavaScript from the publisher page requests an ad through a bid request. In a
request, the publisher includes information such as category of the page, size of
the ad space, country, user’s browser and OS version, cookie, etc., and sends it
to the ad exchange (step 1).

Once the ad exchange receives the bid request from a seller, it then consoli-
dates the request into seller site information (e.g., URL of the publisher page),
device information, and user data. The ad exchange sends the bid request to its
buyer applications (step 2), for instance, through a DSP.

After receiving the bid request, the buyer replies with a bid response con-
taining the ad URL and the markup price (step 3). The RTB protocol typically
waits for a fixed amount of time (e.g., 100ms) to collect bids, and then chooses
the winning bid under the auction’s rules (e.g., OpenRTB [27]). The ad exchange
then notifies the winner and returns the ad to the publisher (step 4).

In the aforementioned example, the bid request comes from the publisher
directly. Therefore, the publisher page is the referrer for the bid request. Very
often, the bid request comes from the market place, where the original request
was purchased and resold by many intermediaries. In that case, the referrer is
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Fig. 2: A simplified view of the Real-
Time Bidding process.

Date Range Size

DSP Traffic 12/10/14 - 3/24/15 2.61T
Blacklists 12/9/09 - 1/15/16 22G
Malware 1/1/11 - 11/17/15 136G
DNS 12/10/14 - 3/24/15 1.54T

Table 1: Summary of all datasets.

●●●●●●●●●●●●●●●●●●●● ●
●●

●
●●

●

●
●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●

●

●●
●●●● ●●● ● ●●●●●

10,000,000

100,000,000

1,000,000,000
3,000,000,000

2014−12−10 2015−01−10 2015−02−10 2015−03−10
Date

N
um

be
r 

of
 B

id
 R

eq
ue

st
s

●

Exchange A
Exchange B
Exchange E
Exchange F
Exchange C
Exchange D

Number of Bid Requests from Ad Exchanges

Fig. 3: Number of daily bid requests from ad exchanges seen in the DSP.

the last entity that sold the ad inventory to the ad exchange. Ad exchanges do
not have visibility of the user-side publisher if the request comes from the market
place. This is one of the challenges for ad exchanges to detect and stop fraud.

3 Datasets

In this section, we describe the datasets we obtained including Demand Side
Platform provider (DSP) traffic, public blacklist data, and malware domain data.
Table 1 provides a brief summary of the datasets.

3.1 DSP Traffic

The DSP provides ad bidding logs extracted from step 3 of Figure 2. The traffic
is aggregated into eight fields per hour every day: the ad exchange that issued
the bid request, the publisher domain name of the referrer URL, the hashed
IP address of the user, the country code and autonomous system number
of the IP address, the hourly timestamp of when the bid request was sent, and
lastly the number of bid requests seen within the specific hour that match all
the previous fields. Within the fields, the publisher domain name represents
either the webpage that users saw, or the last traffic reseller before the bid request
reached the ad exchange. Next, we describe DSP traffic using the volume of bid
requests and publisher domain names.



●
●

●●
●●●●●●●

●●●
●

●
●●●

●
●●

●

●
●

●

●

●●●●●●●●●●●●●●●●●●●●●●
●●●

●●●●●●●●●● ●●●●●●●●●●●●●●
●

●●

●
●

●
●

●●●
●

●
● ●

●
●

●●
●

50,000
100,000
150,000
200,000
250,000

2014−12−10 2015−01−10 2015−02−10 2015−03−10
Date

N
um

be
r 

of
 D

om
ai

ns

●

Exchange A
Exchange B
Exchange E
Exchange F
Exchange C
Exchange D

Number of Unique Domains Daily from Ad Exchanges

Fig. 4: Number of daily publisher domains from ad exchanges seen in the DSP.

Bid Request Volume It is reasonable to assume that for each bid request,
some advertiser wins the bid eventually. Therefore, the bid request volume can
be considered to be the number of ad inventories purchased and shuffled through
the ad exchanges from the visibility of the DSP.

Figure 3 shows the bid request volume from six different ad exchanges from
12/10/2014 to 3/24/2015. One of these ad exchanges is ranked top five in market
share. On average, there are 3.45 billion bid requests daily in total. Individually,
Exchange A processed the most bid requests of all, with an average of 1.77
billion requests per day. Exchange B comes next, with an average of 695 million
requests per day. In addition, Exchange E, Exchange F, and Exchange C received
bid requests on the order of hundreds of millions. Finally, Exchange D had an
average of 30 million bid requests daily, which fluctuated the most compared to
other ad exchanges.

Comparing the volume of the last day from the DSP traffic (3/24/2015)
with that of the first day (12/10/2014), there is a decline in the overall bid
request volume from Exchange A (63.2%), Exchange B (34.3%), Exchange C
(83.2%), and Exchange D (31.2%). However, the volume increased for Exchange
E (18.34%) and Exchange F (64.26%). Our DSP confirmed that this was not a
traffic collection problem but could not identify the root cause of these changes.

Publisher Domains The publisher domain field in the DSP traffic indicates
the source of an ad request. It is either the publisher website where the ad will
be shown, or the reseller domain redirected from some previous publisher.

An average of 391,430 total publisher domains were seen from all ad ex-
changes every day. Figure 4 shows the number of unique publisher domains from
each ad exchange. Although Exchange A had the highest number of bid re-
quests (Figure 3), it represented the lowest number of unique domains (average:
955) per day. It is likely that many of them are traffic resellers. For instance,
coxdigitalsolutions.com is a subsidiary of Cox specializing in buying and
selling digital media. It is the most popular publisher domain in Exchange A,
generating more than 20% of all bid requests. The small set of publisher domains
of Exchange A is quite stable. There were no new publishers in 39 days out of
three months, and an average of 91 new publisher domains on the other days.
Exchange D has the fewest bid requests and also had very few publisher domains,
an average of 14,732 every day. If an ad exchange works with few publishers, it



is easier to provision them and block malicious traffic. On the other hand, it is
harder to know the source of ad inventories from reseller publishers, meaning
detection may need to happen at the reseller’s perspective.

Two ad exchanges saw the largest number of new publisher domains. Ex-
change E had an average of 22,647 new publisher domains, while Exchange F
had an average of 23,405 new publisher domains daily. Towards the end of March
2015 in Figure 4, there were as many as 35,794 new domains from Exchange E
and 56,151 new domains from Exchange F. Both ad exchanges also increased the
volume of bid requests during the same time period in Figure 3. The churn rates
of the publisher domain names in these two ad exchanges were quite high. This
presents a challenge for ad exchanges to track the reputation of new publishers.

Lastly, Exchange B had a stable number of publisher domains every day,
on the order of 100,000. There was a decrease in the number of daily publisher
domains seen from Exchange C around the end of 2014, and then the number
increased again, reaching the 150,000 mark towards the end of March 2015.

3.2 Other Datasets

In order to measure reputation in the DSP bid request traffic, we also obtained
other datasets that provide threat information, which includes public blacklists
and dynamic malware execution traffic. Both provide insight into known abuse
in the ad exchanges. We crawled seven public blacklists [2–5,7, 8, 39] daily from
12/9/2009 to 1/15/2016. In total, 1.92 million unique domains appeared on the
public blacklists. Dynamic malware execution feeds are from one university [20]
and two industry partners. The binaries were each executed for five minutes in
a controlled environment. We extracted date, malware md5, and the domain
names queried during the execution of the binaries. The feeds are collected from
1/1/2011 to 11/17/2015. There are 77.29 million unique malware md5s, querying
a total of 14.3 million domain names. We use PBL to denote the public blacklists
dataset and Md5 to denote the malware domains dataset.

Lastly, we collected DNS resolution data every day from a passive DNS repos-
itory in North America between 12/10/2014 to 3/24/2015. The dataset contains
domain name, query type, and resolved data every day for A, NS, CNAME, and
AAAA query types. We observed a daily average of 891 million unique map-
pings between domain names. On average, the DNS resolution dataset matches
71.56% of all publisher domain names seen in the DSP in the same day. Among
the 28.55% publisher domains from DSP not seen in passive DNS, the majority
of them are long tail content sites. For example, unpopular blog sites, user’s own
fantasy sport pages, customized lists pages, etc. Long tail content can be specific
to certain users’ interests and not commonly accessed across different networks.
In full disclosure, this is perhaps the only not fully open source intelligence source
we used in our experiments. However, commercial passive DNS offerings are very
simple to obtain today [6]. We will use the resolution information to construct
infrastructure graphs and track them over time in Section 6.



(3)

www.awltovhc.com
www.dpbolvw.net
www.emjcd.com
www.ftjcfx.com

www.jdoqocy.com
(2)

hlh.secure-update-get.org
sll.now-update-check.com

ssl.vidupdate24.com
soft24.newupdateonline.com

sls.updateweb.org
(1)

websearch.searc-hall.info
websearch.searchoholic.info

websearch.awsomesearchs.info
websearch.searchmania.info
websearch.greatresults.info

Fig. 5: Examples of blacklisted publisher domains seen in the DSP traffic.

4 Fraudulent Publisher Domains

In this section we provide examples of blacklisted publisher domains that gen-
erated ad bidding requests through the ad exchanges. These domains are from
adware and affiliate marketing programs.

4.1 Case 1: PUP

Blacklisted publisher domains can be generated by Potentially Unwanted Pro-
grams (PUP) such as browser hijacker and pop-up ads.

Figure 5 (1) shows domain names of pattern websearch.*.info that are used
by browser hijackers [22]. The adware forces the user to use a different search
engine to steal impressions that would have otherwise been delivered through
typical search engines (e.g., Google, Bing, Yahoo, etc.). The adware hijacks user
search queries and makes ad bidding requests from these publisher domains to
generate revenue.

Figure 5 (2) shows “update” domains used by pop-up ads. The adware shows
pop-up ads that masquerade as fake updaters for legitimate software, such as
Windows, Flash, and video players [23]. These publisher domains make ad bid-
ding requests from pop-up windows generated by the adware.

4.2 Case 2: Affiliate Marketing

Blacklisted publisher domains may represent affiliate marketing domains. These
affiliate domains request ads through ad exchanges on behalf of adware or mal-
ware. We manually analyzed network traces from dynamic execution of malware
md5s that contained domains in Figure 5 (3). The malware uses fake referrers to
send HTTP GET requests through domains in Figure 5 (3). Then the requests go
through a chain of redirections until finally receiving an ad to generate revenue.

5 Measurement

We first discuss client IP location distribution in DSP traffic in Section 5.2.
Then, we perform reputation analysis of publisher domains by correlating them
with blacklists and malware domains in Section 5.3.
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5.1 Summary of Findings

In summary, we found that:
– There are 13,324 (0.27%) known malicious domains generating bid request

traffic through the ad exchanges in our datasets. On average, they gener-
ate 1.8% of overall bid requests daily, much less than previously published
values [14, 16]. However, 68.28% of blacklisted domains were identified by
public blacklists before they appeared in DSP traffic. This suggests tradi-
tional sources of maliciousness are valuable, but insufficient to understand
ad-abuse from the perspective of DSPs.

– On average, blacklisted publisher domains tend to use more ad exchanges
(average: 1.85) and reach more clients (average: 5109.47) compared to non-
blacklisted domains (average ad exchanges: 1.43, average hashed client IP
addresses: 568.78) (Section 5.3). This suggests reputation systems for ad
publishers are possible.

– Contrary to the observation of blacklisted publisher domains, malware do-
mains use a similar number of ad exchanges (average: 1.44), but are seen
from more hashed client IP addresses (average: 2310.75), compared to pub-
lisher domains never queried by malware (average ad exchanges: 1.43, aver-
age hashed client IP addresses: 485.36). (Section 5.3)

5.2 Client Analysis

We observed 436 million hashed client IPs that sent bid requests for ads. Ac-
cording to information provided by the DSP, the hashed client IP addresses are
from 37,865 different Autonomous Systems in 234 different countries.

Table 2a shows the top six countries where hashed client IP addresses reside.
Nearly 40% of clients are located in the United States. Next, it is the United
Kingdom with 8% of hashed IP addresses. The top six countries also include
Germany (7.11%), Canada (4.82%), France (3.90%), and Mexico (2.98%). There
is a long tail of 228 other countries for the remaining clients. Overall the top six
countries account for 66.75% of all the hashed client IP addresses seen in DSP.
Figure 6 shows the country distribution of hashed client IP address locations.

Table 2b presents the top six Autonomous System Names (ASNs) for hashed
client IP addresses. The ASN distribution is less biased compared to the country



Country Hashed IPs
millions

US 174 (39.91%)
GB 35 (8.03%)
DE 31 (7.11%)
CA 21 (4.82%)
FR 17 (3.90%)
MX 13 (2.98%)
Other 103 (23.62%)
Unknown 42 (9.63%)

Total 436 (100.00%)

(a) Client Location

AS Names Hashed IPs
millions

Comcast 18 (4.13%)
AT&T 17 (3.90%)
Deutsche Telekom 14 (3.21%)
MCI 12 (2.75%)
Verizon 9 (2.06%)
Uninet 7 (1.61%)
Other 359 (82.34%)
Unknown 42 (9.63%)

Total 436 (100.00%)

(b) AS Name

Table 2: 2a: The top six countries for 66.75% of hashed client IP addresses. 2b:
The top six Autonomous System Names for 17.66% of hashed client IP addresses.

distribution. Comcast, AT&T, and Deutsche Telekom are the top three ASNs,
each with under 5% of all hashed IP addresses. There are 37,859 different ASNs
in the long tail of the distribution, which contains 82.34% of all hashed IPs.

5.3 Reputation Analysis

In this section, we explain how we intersect publisher domains from DSP traffic
with blacklists and malware domains to perform reputation analysis.

Public Blacklist Traffic Since 89.87% of the domains on the blacklists we
collected do not have semantic information, we filter them to ensure they are
bad publishers with high confidence. We want to be conservative about what we
keep, so we choose the following filters. First, we obtained all the domains that
appeared on the Alexa [11] top one million list for every day from 12/10/2014
to 3/24/2015. We excluded those consistent Alexa domains because they are
unlikely to be malicious. Second, we excluded all domains under the ad server
category of EasyList [1], because malware conducting impression fraud or click
fraud can generate traffic that goes through ad servers. Lastly, we excluded a
hand curated a whitelist of CDN effective second level domains (e2lds) and we
excluded all fully qualified domain names that overlapped with these e2lds.

Observation 1: 0.27% publisher domains appeared in DSP traffic
were blacklisted by the security community. They generated 1.8% of
all bid requests daily.

We observed 4,905,224 unique domains in the DSP traffic from 12/10/2014
to 3/24/2014. Among them, 13,324 (0.27%) domains were blacklisted some time
between 12/9/2009 and 1/15/2016. Blacklisted domains were responsible for an
average of 1.8% of all bid requests every day. Previous studies estimate nearly
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Fig. 7: Density plot of first seen date date on PBL - first date seen from DSP
(7a) and last seen date on PBL - last date seen from DSP (7b).

30% of bid requests are malicious [14, 16], which suggests this is only a fraction
of the actual abuse. While there are many potential causes, such as referrer
spoofing or lack of ad-abuse investigations, these findings show simply relying
on blacklists from the security community is insufficient to study and combat
abuse. While they are few, we investigated the potential to automatically detect
these abusive domains.

Observation 2: 68.28% of blacklisted publisher domains were
known to the security community before they appeared in DSP traffic.

Figure 7a shows the density distribution for the difference of days between
when a domain was first blacklisted and when it was seen in DSP traffic. The
zero value in this case means that the domain name was blacklisted on the same
day as it was seen in the ad exchanges. Similarly, a value of -500 means that the
domain was blacklisted 500 days before it ever appeared in the datasets from the
DSP. The plot shows that 68.28% (9,097) of all blacklist domains were known
to the security community prior to they started requesting for ads in the DSP
traffic. Moreover, 32.49% (4,329) of blacklisted publisher domains were labeled
more than 535 days before they were seen in the DSP datasets. The peaks of
the distribution reflects several blacklists update events. One event was a major
update of 4,031 domains on 6/23/2013, which corresponds to the -535 days in
Figure 7a. Another update event on 12/4/2014 was reflected around -6 days in
the plot. Eighty domains were blacklisted on 1/15/2011, which makes up the
small bump around -1500 days in the plot.

Figure 8 is a scatter plot of the first date a domain is blacklisted (x-axis)
and its corresponding first seen date in the DSP (y-axis). The size of the point
represents the number of domains in these dates. The points in the bottom side of
the plot are large because this is the first date we had the DSP data. The vertical
group of points represent domains being updated in the blacklist in the same
day. We highlighted a few days when blacklisted domains from the DSP traffic
were first labeled. The plot is more dense on the right side since 2013-06-23. We
increased the number of blacklists to crawl from 3 to 7 on that day, which resulted
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Fig. 8: Scatter plot of first date seen on PBL and first date seen from DSP for
all DSP domains that were on PBL.

in more domain names in PBL dataset and more overlap with the DSP traffic
from that point on. On 2013-11-17, the blacklists updated many domain names
including websearch.*.info used by browser hijackers. On 2015-02-04, there
were a lot of “update” domains used by pop-up ads added to the blacklists, e.g.,
soft12.onlineupdatenow.com. On 2015-06-14, the blacklists updated a group
of algorithmically generated domains with sub domains freempr#.

Observation 3: Most (77.01%) blacklisted publisher domains re-
mained on blacklists after they were last seen in DSP traffic.

We would like to see whether the publisher domains remained on the black-
lists after they were seen in the DSP. We plotted the density distribution for the
number of days when a domain was last seen on blacklists minus when it last
appeared in the DSP (Figure 7b). The distribution has shifted a lot towards the
right part of the x-axis this time. Figure 7b shows that the majority (77.01%)
of blacklisted domains were still on blacklists after they were seen in the DSP.
A total of 14.06% (1,873) of them remained on blacklists more than a year after
they were last seen in the DSP datasets. The peak of Figure 7b reflects the last
date (1/15/2016) of our blacklist dataset. Overall 8,051 DSP domains belong to
this peak in the plot.

Observation 4: Blacklisted publisher domains tend to use more ad
exchanges and reach more hashed client IP addresses than those that
have never been blacklisted.

Each day, we separate the publisher domains into two groups: those that
were seen in PBL (True) and not in PBL (False). For each group, we compute
the average number of distinct ad exchanges and the number of hashed client
IPs that a publisher domain was seen from, as well as the variance within the
group. We visualize the results in Figure 9a to Figure 9d.

Figure 9a shows the density distributions of the daily average number of
ad exchanges for the PBL group and non-PBL group across the entire DSP
dataset. The PBL group were seen from an average of 1.7 to 2 ad exchanges,
more than the non-PBL group. We perform a two-sample Kolmogorov-Smirnov
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Fig. 9: 9a to 9d are PBL plots. 9e to 9h are Md5 plots. 9i to 9l are CDFs
for number of publisher domains forming components of 12/10/2014 (9i), three
scores for components seen on 12/10/2014 (9j), number of components in ad
campaigns (9k) and ad campaign scores (9l).



test (K-S test) where the null hypothesis is that x=y, i.e., that the datasets are
drawn from the same distribution. The K-S test demonstrates we can reject this
null hypothesis (p− value < 2.22 ∗ 10−16). Therefore, the two distributions are
significantly different. We also plot the mean and variance of the average ad
exchange number for each group in Figure 9b. The figure shows that not only
do non-PBL domains use fewer ad exchanges in general, the difference of the
measure between non-PBL domains is small, as reflected by the variance. On
the other hand, PBL domains have relatively higher variance among themselves.

Similarly, we plot the density distribution for number of average hashed client
IP addresses in a day for the PBL and non-PBL groups (Figure 9c), as well as
the mean and variance of the metric (Figure 9d). These figures show that PBL
domains tend to be seen from more hashed client IPs than non-PBL domains.
Since the majority of the content on the web is in the unpopular “long tail”, only
a few hashed client IPs visit any non-PBL domain in general, and the variance
of number of clients is low (Figure 9d). In contrast, PBL domains seen in the
RTB process aim to make money, and thus spread to as many hosts as possible.

Malware Traffic Domains queried by malware are another type of threat in-
formation commonly used by the security community. We filtered the malware
domains using the same three methods as in the PBL case. Within 4,905,224
unique domains from the DSP traffic, 134,262(2.74%) were queried by malware
samples collected over five years. There are ten times more publisher domains
queried by malware than from those on blacklists. Similarly, we can separate the
publisher domains into two groups: malware domain group (Md5 True) and non-
malware domain group (Md5 False). We computed the average daily number of
ad exchanges and hashed client IP addresses for each day in the DSP traffic.

Observation 5: Malware domains have different behavior than
blacklisted domains. That is, malware domains were observed to em-
ploy similar number of ad exchanges to non-malware domains, how-
ever, with a higher number of hashed client IP addresses.

Figure 9e to Figure 9h show the measurement results. We observe bimodal
distributions of malware vs. non-malware domains in Figure 9e and Figure 9g.
Figure 9e and Figure 9f show that publisher domains queried by malware tend
to use a similar number of ad exchanges. In addition, the distributions between
malware domains and non-malware domains overlapped much more than when
we compared PBL group with non-PBL group. Therefore, the number of ad
exchanges is not a distinguishing attribute for the MD5 group. On the other
hand, DSP domains queried by malware were still seen from a larger group of
hashed client IP addresses, compared to the rest of domains never queried by
malware. Malware domains that interact with ad ecosystem are relatively more
popular than non-malware domains.

Malware query non-malicious domains for various reasons, and only a few
of the domains are fraudulent publishers. Recall that when malware interacts
with the ad ecosystem from the client side (Figure 1), there may be syndicated
publishers, or benign ad servers contacted by the malware, in order to reach ad



exchanges. Despite our filtering efforts, it is likely that there are still numerous
benign domains in the malware domain set. Additionally, domains could remain
on blacklists after they become inactive or parked, which results in false positives
when using blacklists. These findings all point to the need for better ad-abuse
ground truth datasets.

6 Infrastructure Tracking

In this section, we show that traditional DNS infrastructure features can be
used to extend the ground truth set, discover new ad abuse cases and track the
threat evolution over time. This can be used by any entity in the ad ecosystem
with visibility of bidding requests to track advertising campaign infrastructure—
focusing on those that are likely to be malicious in intent. While we acknowledge
that the word “campaign” has an overloaded meaning, we define it in the fol-
lowing way and only in the context of ad abuse: a campaign will be defined as
the set of domain names that can be linked together over time based on their IP
infrastructure properties.

At a high level, we construct graphs of the relationship between the domain
name of the ad publisher and the infrastructure the domain name uses. By
building and merging these graphs over time, we can track the infrastructure
and focus on those campaigns that may be malicious, e.g., domains known to
have been blacklisted, queried by malware, or have never been seen before. We
present case studies based on this process in Section 7.

6.1 Constructing Infrastructure Graphs

An infrastructure graph is an undirected graph G, defined by its set of vertices
V and edges E. A disconnected graph is made up of multiple components or
subgraphs with no adjacent edges between them. These components correspond
to advertising campaigns that are tracked over time. Vertices in infrastructure
graphs are domain names or the RDATA the domain names resolve to. RDATA
can be an IPv4/IPv6 address (A/AAAA), a canonical name (CNAME), or a
nameserver (NS). Two vertices are adjacent if and only if exactly one is a domain
name, and the domain name resolved to the RDATA of one of the aforementioned
query types (A/AAAA/CNAME/NS) during time t when the domain name
appeared as a publisher for a bid request.

A Demand Side Platform provider (DSP) can build infrastructure graphs
by performing the following steps. First, the DSP collects all publisher domain
names Dp from the bid requests seen on day t. Second, the DSP resolves all
domain names d ∈ Dp, which results in zero or more domain name and IP
address tuples. More formally, resolving d will yield [(d, rdata0), · · · , (d, rdataN )]
if d resolves to N different IPs, CNAMEs, or NSes on day t. Each of these tuples
corresponds to an edge in our graph G. Finally, after G is built for day t, G is
decomposed into its connected components C, where each component c ∈ C is
ranked and tracked over time as a specific ad campaign. While we experimented
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with more sophisticated community discovery or spectral methods, the benefits
gained were disproportional to the add-on complexity. Thus, we decided to select
the simplest and most straightforward way to mine the graph for campaigns.

Since the DSP bidding request traffic did not include DNS resolution infor-
mation, we chose to correlate that with the DNS dataset obtained from a passive
DNS database from a North American ISP (Table 1). By combining the DNS
resolution seen in the same day in the ISP with the publisher domains from the
bidding request traffic, we were able to construct daily infrastructure graphs.
Next, we discuss how we analyze the produced graphs.

Graph Analysis We study the infrastructure graphs using some basic graph
analysis metrics. Specifically, we first analyze overall graph properties including
vertices, edges and density measures. Then, we examine the connected compo-
nents of the graphs every day and over time. These analytics help us understand
the infrastructure of the publisher domains, and give us insights about how to
rank components based on how suspicious they are and track them over time.

First, we discuss three properties of daily infrastructure graphs. Figure 10
shows three statistics for graphs generated every day: number of vertices (V ),
number of edges (E), and the density measure. We use the following formula to
compute the graph density D :

D =
2E

V (V − 1)
(1)

On average, there are 472 thousand vertices, and 883 thousand edges every
day. The graphs are extremely sparse and the daily density is only 8.35 ∗ 10−6.
In fact, the majority of the edges only connect two vertices. There are 566,744
vertices on 12/10/2014, and it dropped to 342,426 (by 39.58%) on 1/29/2015.
Then the number of vertices slowly increased to 727,501 on 3/24/2015. Since
vertices include publisher domains and DNS resolution data, the change in the
number of vertices over time is largely consistent with the observation of how
the number of daily publisher domains changed (Figure 4). On the other hand,
the change in the number of edges per day is different. The number of daily
edges decreased since 2/17/2015, and dropped to the lowest number 542,945
on 2/21/2015, before it jumped up to 1,203,202 on 3/5/2015. Through manual



analysis, we concluded that this was not caused by any single domain name.
There were fewer resolved data per domain in general in these days.

Second, we study properties of connected components in the infrastructure
graphs. Figure 10 shows the number of connected components over time that
were in the daily infrastructure graphs. On average, there are 127,513 connected
components in a day. Figure 9i demonstrates that the daily infrastructure graph
is highly disconnected. The cumulative distribution for the size of the compo-
nents in a day follows the Zipf’s law. For instance, CDF in 12/10/2010 shows
that 86% of connected components have only one publisher domain in it. Fewer
than 0.7% components have more than ten publisher domains.

6.2 Identifying Suspicious Components

The number of graph components based on the results from Section 6.1 can be
hundreds of thousands in a day (Figure 10), which is likely too many for manual
analysis. However, the measurement from Section 5 suggests we can prioritize
components that are likely to be interesting from a security perspective. We
know publisher domain names differ in behavior when they are known to appear
on blacklists. Conversely the subset of malware domains seen in DSP are very
noisy, and thus it is not a good metric to use for prioritizing components. We
also hypothesize that never-before-seen domains deserve close scrutiny as they
may represent infrastructure changing to avoid detection. The question remains
if these are indicative of true malicious behavior. To find out, we rank publisher
components by their domain names, specifically, if they are on blacklists, if the
domains have never been seen before and a combination of these two measures.

For each publisher component c ∈ C we compute two values βc and νc that
correspond to the proportion of domains in c that appear on blacklists, and
are under brand new from the perspective of the DSP, respectively. Intuitively,
the first one indicates an association with known malicious activity, and the
last suggests the potential threat may have just begun. Specifically, the way we
compute each value of a component is smoothed.

βc =
# of blacklisted publisher domains− 1

Total # of publisher domains
(2)

νc =
# of brand new publisher domains− 1

Total # of publisher domains
(3)

We offset the numerator count by one based on results of the infrastructure
graph analysis from Section 6.1. Since the majority of components have only
one publisher domain name in it, they are isolated singletons and do not provide
any information to other unlabeled domains from infrastructure point of view.
We prefer not to prioritize these singletons among all components even if they
are already blacklisted or brand new. Equation 2 and Equation 3 give singleton
components both zero values. Moreover, we judge whether a domain name is
“brand new” using the effective second-level domains (e2ld) according to public
suffix list [9]. An e2ld is the smallest registrable unit of a domain name and two



domains under an e2ld are likely operated by the same individual. Therefore, a
new domain under a new e2ld is more interesting to us.

After getting these two values βc and νc, we also compute the linear com-
bination of these: ιc = 1

2 (βc + νc). Finally, we reversely sort the components
in a day based on the ιc score. Within a day, ιc can range between 0 and 1.
A component with higher ιc will be prioritized over a component with lower ιc
for inspection. Figure 9j presents cumulative distributions of the proportion of
pbl-related, never-before-seen domains and a linear combination of the two for
a day per component. A total of 98% of the components have zero PBL score
because they do not have any blacklisted domains, and 14% of the components
have a score for having new domains. The final component score combining the
two falls in between the two distributions.

6.3 Tracking Campaigns Over Time

Building infrastructure graphs for an individual day is useful, but tracking the ad
campaigns over time will yield more comprehensive coverage of ad campaigns, as
well as advanced warning of potentially malicious ones. First, if an ad campaign
is determined to be malicious, tracking them over time through small infras-
tructure changes will enable more comprehensive blacklists to be built. Second,
if a tracked ad campaign is known to be malicious, newly added infrastructure
can be more pro-actively blacklisted. Finally, tracking infrastructure over time
allows us to build ground truth to eventually model malicious and benign adver-
tising campaign infrastructure. In our future work we plan to experiment with
predicting fraudulent publishers.

To unify ad campaigns across multiple infrastructure graphs, we simply join
ad campaigns that share IP addresses, canonical names, and name servers that
are the same. This allows us to not only construct graphs within days, but also
across time. We will show that this simple tracking method works well in practice.
While on average there are 127K connected components every day, only 10K of
them form new ad campaigns. A DSP can choose to only go through top-ranked
new components if there is limited time available for threat analysts.

ιad is used to sort advertising campaigns to identify case studies. It is calcu-
lated by adding up all the interesting scores of individual components ιc belong-
ing to that campaign. After we sort the ad campaigns by ιc, we then examine
the distribution of the interesting scores and number of components in the cam-
paigns. Figure 9l shows the cumulative distribution of ad campaign scores. Also,
Figure 9k shows the CDF of the number of components in an ad campaign. Over-
all 99.99% ad campaigns have fewer than 1,000 components. The ad campaign
with the largest number of components (2.2 million in Figure 9k) has the highest
ad campaign score. Domains in this campaign resolved to several parking, and
sinkholing IP addresses, as well as common names servers like GoDaddy. This
is the reason that this noisy campaign is not representative of maliciousness or
freshness of the domains. Starting from the second ad campaign, the interesting
score indicate suspicious activities in the ad exchanges. We now describe the
case studies this measure uncovers in Section 7.



(2)

search.easylifeapp.com
searchiy.gboxapp.com

searchy.easylifeapp.com

(3)

ads.adsrvmedia.net
ads.2xbpub.com
s.ad120m.com
s.ad121m.com
s.ad122m.com

(5)

www.goodsoften.com
www.bestnsoftware.com
www.v81qt8mhxb.com
www.softlsoftware.com

www.b7vr3u0g.com
www.opnrbm1.com
www.ia2x3on4.com

www.thesoftdowd.com
www.xgaz765xy.com
www.a1ig9xka.com

(1)

a24x7-search.in
beta1-search24.me

boba-search.in
bobba-finder.org

global-bsearch.com
kabo-search.com
multi-search.biz
nemo-finder.me
search-world.biz

tosearch.biz

(4)

0spzz.super-promo.vasegiraffe.xyz
0vmzz.updateinstall.vasegiraffe.xyz

0zizz.updateinstall.toesbait.xyz
288zz.updateinstall.vasegiraffe.xyz
2dbzz.updateinstall.vasegiraffe.xyz
2fjzz.updateinstall.vasegiraffe.xyz
2jezz.updateinstall.vasegiraffe.xyz
2qmzz.updateinstall.toesbait.xyz
2qnzz.updateinstall.toesbait.xyz
2umzz.updateinstall.toesbait.xyz

Fig. 11: Publisher domain examples.

7 Case Studies

Among the campaigns with highest (top 0.1%) interesting scores, we found new
cases including Potentially Unwanted Programs (PUP), algorithm generated do-
mains and malware sites.

7.1 Case 1: PUP

Among advertising campaigns with the highest interesting scores, one category
of publisher domains are generated by Potentially Unwanted Programs (PUP).
For example, domains in Figure 11 (1) to (5).

A VirusTotal report [35] suggests a machine communicating with domain
names in Figure 11 (1) (ιad ranked the 3rd highest) is likely infected with a
trojan known as LEMIR or Win32.BKClient by the AV industry. The malware
has many capabilities including changing default search engines to generate rev-
enue, disabling Windows AV, Firewall and Security Center notifications, and can
drop additional malicious binaries [33]. Similarly, ad campaigns with 2nd and 4th

highest ιad (Figure 11 (2) (3)) are generated by ad injections of certain browser
extension. Different malware families communicate with domains in Figure 11
(3) including Win.Trojan.Symmi [36]. These publisher domains may not be ma-
licious, but they are strongly associated with monetization behavior of malware.
These are interesting cases as traditional malware are involved in an area where
we would expect to see only adware or “potentially unwanted programs.” This
shows that malware uses advertising fraud to monetize infections and malware
can also be identified from the vantage point of a DSP.

In addition, several Pop-up Ads campaigns exhibit high level of agility simi-
lar to traditional malware. The ad campaign ranked 1, 184th (Figure 11 (4)) uses
domain fluxing, likely to avoid browser extension detection systems. In total, we
observed more than 26,000 unique domain names from this campaign in three
months of DSP traffic. Moreover, the ad campaign in Figure 11 (5) not only
uses domain fluxing, it also uses the Amazon EC2 cloud to further decrease the
chance of detection. Each of these domains resolved into an EC2 cloud domain
representing a unique Virtual Machine (VM), when active. The VM domains also
change according to the domains that point to them. This shows that miscre-
ants are constantly employing fresh VMs to perform ad fraud. Since traditional
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(3)

Fig. 12: Malware site example.

detection systems often use reputation of IP addresses of domains and URLs,
using cloud machines makes this campaign harder to be detected.

7.2 Case 2: Algorithm Generated Domains

Figure 12 (1) (2) shows two ad campaigns of algorithm generated domains we
found in the DSP traffic (ranked 142th and 183th), containing at least 195 do-
mains. None of the domains were blacklisted, but a high percentage of brand
new domains results in a high score. A new group of domains appear everyday,
pointing to the same IP address. These publisher domains are suspicious. Al-
though no open threat analysis evidence is available to date, it is reasonable to
assume that anything that changes so often must be trying to evade a detection
process. With infrastructure tracking, ad exchanges or DSP can keep a close eye
on such campaigns to proactively deal with potential ad abuse.

7.3 Case 3: Malware Site

Figure 12 (3) shows a group of malware site domains (ranked 1, 484th campaign)
seen from DSP traffic, none of which appeared on blacklists. A Virustotal re-
port [37] shows that the IP address these domains resolved to, had other similar
domains pointing to it during the week ending on 3/24/2015. Related URLs were
detected as malware sites by several URL scanners from the AV industry. This
group uses domain fluxing with both the second level domain zone, and the child
labels. We saw other groups of domains tracked separately, with similar domain
name patterns, and short lifetime. However, they were not grouped into one big
campaign, because different groups were using different IP addresses. In other
words, this campaign uses both domain fluxing and IP address fluxing. Since we
only used exact the same IP address match to form a campaign, we will need
other information to further analyze campaigns like this.

8 Related Work

Previous research has studied behavior of click bots [17,18,26]. The bots mimic
human behavior by generating fake search queries and adding jitters to click



delay. More advanced bots hijacked users’ original clicks and replaced the ads [12,
13,18,28]. The ZeroAccess botnet cost advertisers $100, 000 per day [28] and the
TDSS/TDL4 botnet cost advertisers at least $346 million in total. Ad fraud
detection work mainly focused on click fraud [19,25,32].

Impression fraud is harder to detect than click fraud. Springborn et al. [29]
studied pay-per-view networks that generated fraudulent impressions from invis-
ible iFrames and caused advertisers millions of dollars lost. Advertisers can pur-
chase bluff ads to measure ad abuse [18] and compare charged impressions with
valid impressions. The adware and ad injection problem has been systematically
studied by static and dynamic analysis of web browser extensions [21, 31, 38].
From within the ad ecosystem, Stone-Gross et al. [30] used ad hoc methods to
study specific attacks faced by ad exchanges, including referrer spoofing and
cookie replay attacks. Google also documented what they consider to be invalid
traffic in [34] but did not disclose the details of their traffic filters.

9 Conclusion

In this study, we measured ad abuse from the perspective of a Demand Side Plat-
form (DSP). We found that traditional sources of low reputation, such as public
blacklists and malware traces, greatly underestimate ad-abuse, which highlight
the need to build lists catered towards ad-abuse. The good news, however, is ma-
licious publishers that participate in ad-abuse can likely be modeled at the DSP
level based on their behavioral characteristics. Finally, malicious campaigns can
be tracked using graph analysis and simple heuristics, allowing DSPs to track
suspicious infrastructure.
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